期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
A Framework of Deep Optimal Features Selection for Apple Leaf Diseases Recognition
1
作者 Samra Rehman Muhammad Attique Khan +5 位作者 Majed Alhaisoni Ammar Armghan Usman Tariq Fayadh Alenezi Ye Jin Kim Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2023年第4期697-714,共18页
Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a resul... Identifying fruit disease manually is time-consuming, expertrequired,and expensive;thus, a computer-based automated system is widelyrequired. Fruit diseases affect not only the quality but also the quantity.As a result, it is possible to detect the disease early on and cure the fruitsusing computer-based techniques. However, computer-based methods faceseveral challenges, including low contrast, a lack of dataset for training amodel, and inappropriate feature extraction for final classification. In thispaper, we proposed an automated framework for detecting apple fruit leafdiseases usingCNNand a hybrid optimization algorithm. Data augmentationis performed initially to balance the selected apple dataset. After that, twopre-trained deep models are fine-tuning and trained using transfer learning.Then, a fusion technique is proposed named Parallel Correlation Threshold(PCT). The fused feature vector is optimized in the next step using a hybridoptimization algorithm. The selected features are finally classified usingmachine learning algorithms. Four different experiments have been carriedout on the augmented Plant Village dataset and yielded the best accuracy of99.8%. The accuracy of the proposed framework is also compared to that ofseveral neural nets, and it outperforms them all. 展开更多
关键词 Convolutional neural networks deep learning features fusion features optimization CLASSIFICATION
下载PDF
An Ensemble of Optimal Deep Learning Features for Brain Tumor Classification 被引量:2
2
作者 Ahsan Aziz Muhammad Attique +5 位作者 Usman Tariq Yunyoung Nam Muhammad Nazir Chang-Won Jeong Reham R.Mostafa Rasha H.Sakr 《Computers, Materials & Continua》 SCIE EI 2021年第11期2653-2670,共18页
Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of... Owing to technological developments,Medical image analysis has received considerable attention in the rapid detection and classification of diseases.The brain is an essential organ in humans.Brain tumors cause loss of memory,vision,and name.In 2020,approximately 18,020 deaths occurred due to brain tumors.These cases can be minimized if a brain tumor is diagnosed at a very early stage.Computer vision researchers have introduced several techniques for brain tumor detection and classification.However,owing to many factors,this is still a challenging task.These challenges relate to the tumor size,the shape of a tumor,location of the tumor,selection of important features,among others.In this study,we proposed a framework for multimodal brain tumor classification using an ensemble of optimal deep learning features.In the proposed framework,initially,a database is normalized in the form of high-grade glioma(HGG)and low-grade glioma(LGG)patients and then two pre-trained deep learning models(ResNet50 and Densenet201)are chosen.The deep learning models were modified and trained using transfer learning.Subsequently,the enhanced ant colony optimization algorithm is proposed for best feature selection from both deep models.The selected features are fused using a serial-based approach and classified using a cubic support vector machine.The experimental process was conducted on the BraTs2019 dataset and achieved accuracies of 87.8%and 84.6%for HGG and LGG,respectively.The comparison is performed using several classification methods,and it shows the significance of our proposed technique. 展开更多
关键词 Brain tumor data normalization transfer learning features optimization features fusion
下载PDF
A Novel Efficient Patient Monitoring FER System Using Optimal DL-Features
3
作者 Mousa Alhajlah 《Computers, Materials & Continua》 SCIE EI 2023年第3期6161-6175,共15页
Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment ... Automated Facial Expression Recognition(FER)serves as the backbone of patient monitoring systems,security,and surveillance systems.Real-time FER is a challenging task,due to the uncontrolled nature of the environment and poor quality of input frames.In this paper,a novel FER framework has been proposed for patient monitoring.Preprocessing is performed using contrast-limited adaptive enhancement and the dataset is balanced using augmentation.Two lightweight efficient Convolution Neural Network(CNN)models MobileNetV2 and Neural search Architecture Network Mobile(NasNetMobile)are trained,and feature vectors are extracted.The Whale Optimization Algorithm(WOA)is utilized to remove irrelevant features from these vectors.Finally,the optimized features are serially fused to pass them to the classifier.A comprehensive set of experiments were carried out for the evaluation of real-time image datasets FER-2013,MMA,and CK+to report performance based on various metrics.Accuracy results show that the proposed model has achieved 82.5%accuracy and performed better in comparison to the state-of-the-art classification techniques in terms of accuracy.We would like to highlight that the proposed technique has achieved better accuracy by using 2.8 times lesser number of features. 展开更多
关键词 Facial expression recognition deep learning transfer learning feature optimization
下载PDF
Multiclass Stomach Diseases Classication Using Deep Learning Features Optimization 被引量:3
4
作者 Muhammad Attique Khan Abdul Majid +4 位作者 Nazar Hussain Majed Alhaisoni Yu-Dong Zhang Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第6期3381-3399,共19页
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac... In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance. 展开更多
关键词 Stomach infections deep features features optimization FUSION classication
下载PDF
Malaria Blood Smear Classification Using Deep Learning and Best Features Selection
5
作者 Talha Imran Muhammad Attique Khan +5 位作者 Muhammad Sharif Usman Tariq Yu-Dong Zhang Yunyoung Nam Yunja Nam Byeong-Gwon Kang 《Computers, Materials & Continua》 SCIE EI 2022年第1期1875-1891,共17页
Malaria is a critical health condition that affects both sultry and frigid region worldwide,giving rise to millions of cases of disease and thousands of deaths over the years.Malaria is caused by parasites that enter ... Malaria is a critical health condition that affects both sultry and frigid region worldwide,giving rise to millions of cases of disease and thousands of deaths over the years.Malaria is caused by parasites that enter the human red blood cells,grow there,and damage them over time.Therefore,it is diagnosed by a detailed examination of blood cells under the microscope.This is the most extensively used malaria diagnosis technique,but it yields limited and unreliable results due to the manual human involvement.In this work,an automated malaria blood smear classification model is proposed,which takes images of both infected and healthy cells and preprocesses themin the L^(*)a^(*)b^(*)color space by employing several contrast enhancement methods.Feature extraction is performed using two pretrained deep convolutional neural networks,DarkNet-53 and DenseNet-201.The features are subsequently agglutinated to be optimized through a nature-based feature reduction method called the whale optimization algorithm.Several classifiers are effectuated on the reduced features,and the achieved results excel in both accuracy and time compared to previously proposed methods. 展开更多
关键词 MALARIA PREPROCESSING deep learning features optimization CLASSIFICATION
下载PDF
Crops Leaf Diseases Recognition:A Framework of Optimum Deep Learning Features
6
作者 Shafaq Abbas Muhammad Attique Khan +5 位作者 Majed Alhaisoni Usman Tariq Ammar Armghan Fayadh Alenezi Arnab Majumdar Orawit Thinnukool 《Computers, Materials & Continua》 SCIE EI 2023年第1期1139-1159,共21页
Manual diagnosis of crops diseases is not an easy process;thus,a computerized method is widely used.Froma couple of years,advancements in the domain ofmachine learning,such as deep learning,have shown substantial succ... Manual diagnosis of crops diseases is not an easy process;thus,a computerized method is widely used.Froma couple of years,advancements in the domain ofmachine learning,such as deep learning,have shown substantial success.However,they still faced some challenges such as similarity in disease symptoms and irrelevant features extraction.In this article,we proposed a new deep learning architecture with optimization algorithm for cucumber and potato leaf diseases recognition.The proposed architecture consists of five steps.In the first step,data augmentation is performed to increase the numbers of training samples.In the second step,pre-trained DarkNet19 deep model is opted and fine-tuned that later utilized for the training of fine-tuned model through transfer learning.Deep features are extracted from the global pooling layer in the next step that is refined using Improved Cuckoo search algorithm.The best selected features are finally classified using machine learning classifiers such as SVM,and named a few more for final classification results.The proposed architecture is tested using publicly available datasets–Cucumber National Dataset and Plant Village.The proposed architecture achieved an accuracy of 100.0%,92.9%,and 99.2%,respectively.Acomparison with recent techniques is also performed,revealing that the proposed method achieved improved accuracy while consuming less computational time. 展开更多
关键词 Crops diseases PREPROCESSING convolutional neural network features optimization machine learning
下载PDF
Deep-Net:Fine-Tuned Deep Neural Network Multi-Features Fusion for Brain Tumor Recognition
7
作者 Muhammad Attique Khan Reham R.Mostafa +6 位作者 Yu-Dong Zhang Jamel Baili Majed Alhaisoni Usman Tariq Junaid Ali Khan Ye Jin Kim Jaehyuk Cha 《Computers, Materials & Continua》 SCIE EI 2023年第9期3029-3047,共19页
Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diag... Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework. 展开更多
关键词 Brain tumor haze contrast enhancement deep learning transfer learning features optimization
下载PDF
An Automated Classification Technique for COVID-19 Using Optimized Deep Learning Features
8
作者 Ejaz Khan Muhammad Zia Ur Rehman +3 位作者 Fawad Ahmed Suliman A.Alsuhibany Muhammad Zulfiqar Ali Jawad Ahmad 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3799-3814,共16页
In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test ... In 2020,COVID-19 started spreading throughout the world.This deadly infection was identified as a virus that may affect the lungs and,in severe cases,could be the cause of death.The polymerase chain reaction(PCR)test is commonly used to detect this virus through the nasal passage or throat.However,the PCR test exposes health workers to this deadly virus.To limit human exposure while detecting COVID-19,image processing techniques using deep learning have been successfully applied.In this paper,a strategy based on deep learning is employed to classify the COVID-19 virus.To extract features,two deep learning models have been used,the DenseNet201 and the SqueezeNet.Transfer learning is used in feature extraction,and models are fine-tuned.A publicly available computerized tomography(CT)scan dataset has been used in this study.The extracted features from the deep learning models are optimized using the Ant Colony Optimization algorithm.The proposed technique is validated through multiple evaluation parameters.Several classifiers have been employed to classify the optimized features.The cubic support vector machine(Cubic SVM)classifier shows superiority over other commonly used classifiers and attained an accuracy of 98.72%.The proposed technique achieves state-of-the-art accuracy,a sensitivity of 98.80%,and a specificity of 96.64%. 展开更多
关键词 CT scans COVID-19 classification deep learning feature optimization
下载PDF
Facial Image-Based Autism Detection:A Comparative Study of Deep Neural Network Classifiers
9
作者 Tayyaba Farhat Sheeraz Akram +3 位作者 Hatoon SAlSagri Zulfiqar Ali Awais Ahmad Arfan Jaffar 《Computers, Materials & Continua》 SCIE EI 2024年第1期105-126,共22页
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula... Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis. 展开更多
关键词 AUTISM Autism Spectrum Disorder(ASD) disease segmentation features optimization deep learning models facial images classification
下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
10
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine Feature optimization Gas-bearing distribution prediction
下载PDF
Optimization and Performance Enhancement of Gesture Recognition Algorithm Based on FMCW Millimeter-Wave Radar
11
作者 Zhe He Jinlong Zhou +1 位作者 Decheng Bao Renjing Gao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期412-421,共10页
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio... Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems. 展开更多
关键词 gesture recognition biometric filtering frequency-modulated continuous wave(FMCW)millimeter-wave radar feature optimization human-computer interaction
下载PDF
Machine Learning Enabled Novel Real-Time IoT Targeted DoS/DDoS Cyber Attack Detection System
12
作者 Abdullah Alabdulatif Navod Neranjan Thilakarathne Mohamed Aashiq 《Computers, Materials & Continua》 SCIE EI 2024年第9期3655-3683,共29页
The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential... The increasing prevalence of Internet of Things(IoT)devices has introduced a new phase of connectivity in recent years and,concurrently,has opened the floodgates for growing cyber threats.Among the myriad of potential attacks,Denial of Service(DoS)attacks and Distributed Denial of Service(DDoS)attacks remain a dominant concern due to their capability to render services inoperable by overwhelming systems with an influx of traffic.As IoT devices often lack the inherent security measures found in more mature computing platforms,the need for robust DoS/DDoS detection systems tailored to IoT is paramount for the sustainable development of every domain that IoT serves.In this study,we investigate the effectiveness of three machine learning(ML)algorithms:extreme gradient boosting(XGB),multilayer perceptron(MLP)and random forest(RF),for the detection of IoTtargeted DoS/DDoS attacks and three feature engineering methods that have not been used in the existing stateof-the-art,and then employed the best performing algorithm to design a prototype of a novel real-time system towards detection of such DoS/DDoS attacks.The CICIoT2023 dataset was derived from the latest real-world IoT traffic,incorporates both benign and malicious network traffic patterns and after data preprocessing and feature engineering,the data was fed into our models for both training and validation,where findings suggest that while all threemodels exhibit commendable accuracy in detectingDoS/DDoS attacks,the use of particle swarmoptimization(PSO)for feature selection has made great improvements in the performance(accuracy,precsion recall and F1-score of 99.93%for XGB)of the ML models and their execution time(491.023 sceonds for XGB)compared to recursive feature elimination(RFE)and randomforest feature importance(RFI)methods.The proposed real-time system for DoS/DDoS attack detection entails the implementation of an platform capable of effectively processing and analyzing network traffic in real-time.This involvesemploying the best-performing ML algorithmfor detection and the integration of warning mechanisms.We believe this approach will significantly enhance the field of security research and continue to refine it based on future insights and developments. 展开更多
关键词 Machine learning Internet of Things(IoT) DoS DDoS CYBERSECURITY intrusion prevention network security feature optimization sustainability
下载PDF
Short-Term Mosques Load Forecast Using Machine Learning and Meteorological Data 被引量:1
13
作者 Musaed Alrashidi 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期371-387,共17页
The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these t... The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively. 展开更多
关键词 Big data harvesting mosque load forecast data preprocessing machine learning optimal features selection
下载PDF
森林优化特征选择算法的增强与扩展 被引量:9
14
作者 刘兆赓 李占山 +2 位作者 王丽 王涛 于海鸿 《软件学报》 EI CSCD 北大核心 2020年第5期1511-1524,共14页
特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林... 特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机性、全局播种阶段的人为参数设定,影响了该算法的准确率和维度缩减能力;同时,算法本身存在着高维数据处理能力不足的本质缺陷.从信息增益率的角度给出了一种初始化策略,在全局播种阶段,借用模拟退火控温函数的思想自动生成参数,并结合维度缩减率给出了适应度函数;同时,针对形成的优质森林采取贪心算法,形成一种特征选择算法EFSFOA(enhanced feature selection using forest optimization algorithm).此外,在面对高维数据的处理时,采用集成特征选择的方案形成了一个适用于EFSFOA的集成特征选择框架,使其能够有效处理高维数据特征选择问题.通过设计对比实验,验证了EFSFOA与FSFOA相比在分类准确率和维度缩减率上均有明显的提高,高维数据处理能力更是提高到了100 000维.将EFSFOA与近年来提出的比较高效的基于演化计算的特征选择方法进行对比,EFSFOA仍具有很强的竞争力. 展开更多
关键词 enhanced feature selection using forest optimization algorithm(EFSFOA) 高维 特征选择 演化计算
下载PDF
Agricultural Ontology Based Feature Optimization for Agricultural Text Clustering 被引量:4
15
作者 SU Ya-ru WANG Ru-jing +3 位作者 CHEN Peng WEI Yuan-yuan LI Chuan-xi HU Yi-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第5期752-759,共8页
Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension... Feature optimization is important to agricultural text mining. Usually, the vector space model is used to represent text documents. However, this basic approach still suffers from two drawbacks: thecurse of dimension and the lack of semantic information. In this paper, a novel ontology-based feature optimization method for agricultural text was proposed. First, terms of vector space model were mapped into concepts of agricultural ontology, which concept frequency weights are computed statistically by term frequency weights; second, weights of concept similarity were assigned to the concept features according to the structure of the agricultural ontology. By combining feature frequency weights and feature similarity weights based on the agricultural ontology, the dimensionality of feature space can be reduced drastically. Moreover, the semantic information can be incorporated into this method. The results showed that this method yields a significant improvement on agricultural text clustering by the feature optimization. 展开更多
关键词 agricultural ontology feature optimization agricultural text clustering
下载PDF
Classification of Positive COVID-19 CT Scans Using Deep Learning 被引量:3
16
作者 Muhammad Attique Khan Nazar Hussain +5 位作者 Abdul Majid Majed Alhaisoni Syed Ahmad Chan Bukhari Seifedine Kadry Yunyoung Nam Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第3期2923-2938,共16页
In medical imaging,computer vision researchers are faced with a variety of features for verifying the authenticity of classifiers for an accurate diagnosis.In response to the coronavirus 2019(COVID-19)pandemic,new tes... In medical imaging,computer vision researchers are faced with a variety of features for verifying the authenticity of classifiers for an accurate diagnosis.In response to the coronavirus 2019(COVID-19)pandemic,new testing procedures,medical treatments,and vaccines are being developed rapidly.One potential diagnostic tool is a reverse-transcription polymerase chain reaction(RT-PCR).RT-PCR,typically a time-consuming process,was less sensitive to COVID-19 recognition in the disease’s early stages.Here we introduce an optimized deep learning(DL)scheme to distinguish COVID-19-infected patients from normal patients according to computed tomography(CT)scans.In the proposed method,contrast enhancement is used to improve the quality of the original images.A pretrained DenseNet-201 DL model is then trained using transfer learning.Two fully connected layers and an average pool are used for feature extraction.The extracted deep features are then optimized with a Firefly algorithm to select the most optimal learning features.Fusing the selected features is important to improving the accuracy of the approach;however,it directly affects the computational cost of the technique.In the proposed method,a new parallel high index technique is used to fuse two optimal vectors;the outcome is then passed on to an extreme learning machine for final classification.Experiments were conducted on a collected database of patients using a 70:30 training:Testing ratio.Our results indicated an average classification accuracy of 94.76%with the proposed approach.A comparison of the outcomes to several other DL models demonstrated the effectiveness of our DL method for classifying COVID-19 based on CT scans. 展开更多
关键词 CORONAVIRUS contrast enhancement deep learning features optimization FUSION CLASSIFICATION
下载PDF
Classication of COVID-19 CT Scans via Extreme Learning Machin 被引量:2
17
作者 Muhammad Attique Khan Abdul Majid +5 位作者 Tallha Akram Nazar Hussain Yunyoung Nam Seifedine Kadry Shui-Hua Wang Majed Alhaisoni 《Computers, Materials & Continua》 SCIE EI 2021年第7期1003-1019,共17页
Here,we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography(CT)scans.The scheme operates in four steps.Initially,we prepared a database containing COVID-19 pneumonia... Here,we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography(CT)scans.The scheme operates in four steps.Initially,we prepared a database containing COVID-19 pneumonia and normal CT scans.These images were retrieved from the Radiopaedia COVID-19 website.The images were divided into training and test sets in a ratio of 70:30.Then,multiple features were extracted from the training data.We used canonical correlation analysis to fuse the features into single vectors;this enhanced the predictive capacity.We next implemented a genetic algorithm(GA)in which an Extreme Learning Machine(ELM)served to assess GA tness.Based on the ELM losses,the most discriminatory features were selected and saved as an ELM Model.Test images were sent to the model,and the best-selected features compared to those of the trained model to allow nal predictions.Validation employed the collected chest CT scans.The best predictive accuracy of the ELM classier was 93.9%;the scheme was effective. 展开更多
关键词 CORONAVIRUS classical features feature fusion feature optimization PREDICTION
下载PDF
Application of a new feature extraction and optimization method to surface defect recognition of cold rolled strips 被引量:6
18
作者 Guifang Wu Ke Xu Jinwu Xu 《Journal of University of Science and Technology Beijing》 CSCD 2007年第5期437-442,共6页
Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be go... Considering that the surface defects of cold rolled strips are hard to be recognized by human eyes under high-speed circumstances, an automatic recognition technique was discussed. Spectrum images of defects can be got by fast Fourier transform (FFF) and sum of valid pixels (SVP), and its optimized center region, which concentrates nearly all energies, are extracted as an original feature set. Using genetic algorithm to optimize the feature set, an optimized feature set with 51 features can be achieved. Using the optimized feature set as an input vector of neural networks, the recognition effects of LVQ neural networks have been studied. Experiment results show that the new method can get a higher classification rate and can settle the automatic recognition problem of surface defects on cold rolled strips ideally. 展开更多
关键词 cold rolled strip surface defect neural networks fast Fourier transform (FFT) feature extraction and optimization genetic algorithm feature set
下载PDF
Computer Decision Support System for Skin Cancer Localization and Classification 被引量:2
19
作者 Muhammad Attique Khan Tallha Akram +2 位作者 Muhammad Sharif Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第7期1041-1064,共24页
In this work,we propose a new,fully automated system for multiclass skin lesion localization and classification using deep learning.The main challenge is to address the problem of imbalanced data classes,found in HAM1... In this work,we propose a new,fully automated system for multiclass skin lesion localization and classification using deep learning.The main challenge is to address the problem of imbalanced data classes,found in HAM10000,ISBI2018,and ISBI2019 datasets.Initially,we consider a pretrained deep neural network model,DarkeNet19,and fine-tune the parameters of third convolutional layer to generate the image gradients.All the visualized images are fused using a High-Frequency approach along with Multilayered Feed-Forward Neural Network(HFaFFNN).The resultant image is further enhanced by employing a log-opening based activation function to generate a localized binary image.Later,two pre-trained deep models,Darknet-53 and NasNet-mobile,are employed and fine-tuned according to the selected datasets.The concept of transfer learning is later explored to train both models,where the input feed is the generated localized lesion images.In the subsequent step,the extracted features are fused using parallel max entropy correlation(PMEC)technique.To avoid the problem of overfitting and to select the most discriminant feature information,we implement a hybrid optimization algorithm called entropy-kurtosis controlled whale optimization(EKWO)algorithm.The selected features are finally passed to the softmax classifier for the final classification.Three datasets are used for the experimental process,such as HAM10000,ISBI2018,and ISBI2019 to achieve an accuracy of 95.8%,97.1%,and 85.35%,respectively. 展开更多
关键词 Skin cancer convolutional neural network lesion localization transfer learning features fusion features optimization
下载PDF
Automatic Text Summarization Using Genetic Algorithm and Repetitive Patterns 被引量:2
20
作者 Ebrahim Heidary Hamïd Parvïn +4 位作者 Samad Nejatian Karamollah Bagherifard Vahideh Rezaie Zulkefli Mansor Kim-Hung Pho 《Computers, Materials & Continua》 SCIE EI 2021年第4期1085-1101,共17页
Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process... Taking into account the increasing volume of text documents,automatic summarization is one of the important tools for quick and optimal utilization of such sources.Automatic summarization is a text compression process for producing a shorter document in order to quickly access the important goals and main features of the input document.In this study,a novel method is introduced for selective text summarization using the genetic algorithm and generation of repetitive patterns.One of the important features of the proposed summarization is to identify and extract the relationship between the main features of the input text and the creation of repetitive patterns in order to produce and optimize the vector of the main document features in the production of the summary document compared to other previous methods.In this study,attempts were made to encompass all the main parameters of the summary text including unambiguous summary with the highest precision,continuity and consistency.To investigate the efficiency of the proposed algorithm,the results of the study were evaluated with respect to the precision and recall criteria.The results of the study evaluation showed the optimization the dimensions of the features and generation of a sequence of summary document sentences having the most consistency with the main goals and features of the input document. 展开更多
关键词 Natural language processing extractive summarization features optimization repetitive patterns genetic algorithm
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部