In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable imp...In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.展开更多
In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying co...In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.展开更多
The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the obje...The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.展开更多
This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired...This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.展开更多
This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angl...This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.展开更多
A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties ...A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.展开更多
In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary ...In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.展开更多
Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requireme...Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requirements of 3D space. By analyzing the relationship between the flight-path angle and its projections on OXY and OXZ planes, we obtain the ideal design requirements of the guidance laws. Based on the requirements, we design a 2D suboptimal guidance law used in the horizontal plane; combining the 2D vertical suboptimal guidance law, we create a whole ballistic simulation of six degree-of-freedom. The results are compared with those using other three guidance modes in the case of large windage of the initial azimuth angle. When the proportional navigation guidance (PNG) law is used in the horizontal planes, the landing angle will obviously decrease. With the proposed guidance mode, the large landing angle can be realized and meet the guidance precision requirements. Moreover, the required overload can decrease to meet the control requirement. The effects of the proposed guidance mode are close to that of 3DSGL despite its very simple form.展开更多
This paper deals with the problem of intercepting maneuvering targets with terminal angle constraints for missiles subjected to three-dimensional non-decoupling engagement geometry.To achieve the finite-time intercept...This paper deals with the problem of intercepting maneuvering targets with terminal angle constraints for missiles subjected to three-dimensional non-decoupling engagement geometry.To achieve the finite-time interception and satisfactory overload characteristics, a time varying sliding mode control methodology is developed based on a time base generator function. The main feature of the proposed guidance law guarantees the Line-of-Sight(LOS) angles to converge to small neighborhoods of the desired values at the interception time. First, a fractional power extended state observer is used to estimate the unknown target acceleration, which can significantly reduce the adaptive switching gain. The fractional power extended state observer enjoys the advantage of better noise tolerance. Then, a newly designed sliding mode surface is constructed by introducing a time base generator function and the time-varying sliding mode guidance law is developed based on this time-varying sliding surface. The proposed guidance law significantly reduces the overload magnitudes. Numerical simulations are carried out to verify the performance of the proposed guidance law.展开更多
基金supported by the Aeronautical Science Foundation of China(20150172001)
文摘In this paper, a new adaptive optimal guidance law with impact angle and seeker’s field-of-view(FOV) angle constraints is proposed. To this end, the generalized optimal guidance law is derived first. A changeable impact angle weighting(IAW) coefficient is introduced and used to modify the guidance law to make it adaptive for all guidance constraints. After integrating the closed-form solution of the guidance command with linearized engagement kinematics, the analytic predictive models of impact angle and FOV angle are built, and the available range of IAW corresponding to constraints is certain. Next, a calculation scheme is presented to acquire the real-time value of IAW during the entire guidance process. When applying the proposed guidance law, the IAW will keep small to avoid a trajectory climbing up to limit FOV angle at an initial time but will increase with the closing target to improve impact position and angle accuracy, thereby ensuring that the guidance law can juggle orders of guidance accuracy and constraints control.
基金Sponsored by the National Security Academic Foundation(Grant No.11176012)the CALT University Joint innovation Foundation(Grant No.CALT 201302)
文摘In this paper,an optimal guidance law for missiles with impact angle and miss distance constraints is proposed to achieve the maximal terminal velocity. The normal acceleration command that includes the timevarying coefficients is introduced to satisfy the desired impact angle as well as zero miss distance according to the geometric relation and relative motion parameters between missile and target. The problem is formulated as an optimal control problem by defining the angle of velocity error and flight-path angle as state variables and maximizing a performance index of the terminal velocity. The analytical form of the proposed guidance law is obtained as the solution of the optimal control problem combining optimal control theory and numerical value computation method. Nonlinear simulations of various situations demonstrate the performance and feasibility of the proposed optimal guidance law.
基金supported by the National Natural Science Foundation of China(50875024)
文摘The extended optima straints of miss distance and Schwartz inequality. To reduce guidance law with terminal conmpact angle is derived by the terminal acceleration and eliminate gravity disturbance absolutely, the object function, which designs the weight of control command to be the power function of time-to-go's reciprocal, is given. And the gravity is considered when building the state equation. Based on the parsing express of the guidance command change with varying time and adjoint system analysis method, the command characteristics and the non-dimensional miss distance of the guidance law are analyzed, a design principle of guidance order coefficients is discussed. Finally, based on the requirement of engineering, the method to calculate the guidance condition and maximal required acceleration of the guidance law is given. The simulation demonstrates that not only the guidance law can satisfy the terminal position and impact angle constraints, but also the terminal acceleration can be converged toward zero, which will support a good situation for the terminal angle of attacking control.
文摘This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time.
基金This work was supported by the National Nature Science Foundation of China(11572097).
文摘This paper proposes a cooperative guidance law for attacking a ground target with the impact angle constraint based on the motion camouflage strategy in the line-of-sight(LOS)frame.A dynamic model with the impact angle constraint is established according to the relative motion between multiple missiles and the target.The process of cooperative guidance law design is divided into two stages.Firstly,based on the undirected graph theory,a new finite-time consensus protocol on the LOS direction is derived to guarantee relative distances reach consensus.And the value of acceleration command is positive,which is beneficial for engineering realization.Secondly,the acceleration command on the normal direction of the LOS is designed based on motion camouflage and finite-time convergence,which can ensure the missiles reach the target with the desired angle and satisfy the motion camouflage state.The finitetime stability analysis is proved by the Lyapunov theory.Numerical simulations for stationary and maneuver targets have demonstrated the effectiveness of the cooperative guidance law proposed.
文摘A trajectory shaping guidance law based on virtua angle (TSGLBVA) is proposed for a re-entry vehicle with the constraints of terminal impact angles and their time derivatives. In the view of differential properties of the maneuvering trajectory, a virtual angle and a virtual radius are defined. Also, the shaping trajectory of the vehicle is established by the polynomials of the virtual angle. Then, four optimized parameters are selected according to the theorem of parameters transformation presented in this paper. Finally, a convergent variant of the Nelder-Mead algorithm is adopted to obtain the reference trajectory, and a trajectory feedback tracking guidance law is designed. The simulation results demonstrate that the TSGLBVA ensures the re-entry vehicle to impact a target precisely from a specified direction with smal terminal load factor command, as well as to obtain a maximum or constrained terminal velocity according to various requirements.
基金supported by the Defense Science and Technology Key Laboratory Fund of Luoyang Electro-Optical Equipment Institute,Aviation Industry Corporation of China (6142504200108)。
文摘In this paper, a trajectory shaping guidance law,which considers constraints of field-of-view(FOV) angle, impact angle, and terminal lateral acceleration, is proposed for a constant speed missile against a stationary target. First, to decouple constraints of the FOV angle and the terminal lateral acceleration, the third-order polynomial with respect to the line-ofsight(LOS) angle is introduced. Based on an analysis of the relationship between the looking angle and the guidance coefficient,the boundary of the coefficient that satisfies the FOV constraint is obtained. The terminal guidance law coefficient is used to guarantee the convergence of the terminal conditions. Furthermore, the proposed law can be implemented under bearingsonly information, as the guidance command does not involve the relative range and the LOS angle rate. Finally, numerical simulations are performed based on a kinematic vehicle model to verify the effectiveness of the guidance law. Overall, the work offers an easily implementable guidance law with closed-form guidance gains, which is suitable for engineering applications.
基金National Natural Science Foundation of China (60904085) New Teachers’ Fund for Doctor Stations of Ministry of Education of China (200802881012)+1 种基金 Excellent Talent Project “Zijin Star” Foundation of Nanjing University of Science and Technology Foundation of National Defence Key Laboratory of Ballistics
文摘Both the design process and form of the three-dimensional (3D) suboptimal guidance law (3DSGL) are very complex. Therefore, we propose the use of two-dimensional (2D) guidance laws to meet the guidance requirements of 3D space. By analyzing the relationship between the flight-path angle and its projections on OXY and OXZ planes, we obtain the ideal design requirements of the guidance laws. Based on the requirements, we design a 2D suboptimal guidance law used in the horizontal plane; combining the 2D vertical suboptimal guidance law, we create a whole ballistic simulation of six degree-of-freedom. The results are compared with those using other three guidance modes in the case of large windage of the initial azimuth angle. When the proportional navigation guidance (PNG) law is used in the horizontal planes, the landing angle will obviously decrease. With the proposed guidance mode, the large landing angle can be realized and meet the guidance precision requirements. Moreover, the required overload can decrease to meet the control requirement. The effects of the proposed guidance mode are close to that of 3DSGL despite its very simple form.
基金co-supported by the National Natural Science Foundation of China(Nos.61673034 and 62073019)。
文摘This paper deals with the problem of intercepting maneuvering targets with terminal angle constraints for missiles subjected to three-dimensional non-decoupling engagement geometry.To achieve the finite-time interception and satisfactory overload characteristics, a time varying sliding mode control methodology is developed based on a time base generator function. The main feature of the proposed guidance law guarantees the Line-of-Sight(LOS) angles to converge to small neighborhoods of the desired values at the interception time. First, a fractional power extended state observer is used to estimate the unknown target acceleration, which can significantly reduce the adaptive switching gain. The fractional power extended state observer enjoys the advantage of better noise tolerance. Then, a newly designed sliding mode surface is constructed by introducing a time base generator function and the time-varying sliding mode guidance law is developed based on this time-varying sliding surface. The proposed guidance law significantly reduces the overload magnitudes. Numerical simulations are carried out to verify the performance of the proposed guidance law.