The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and opt...The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.展开更多
基金supported by the Innovation Foundation for Scientific Research Base(NJ20140008NJ20150018)+1 种基金the Aeronautical Science Foundation of China(20132052035)the National Defense Basic Scientific Research(B2520110008)
文摘The optimal imaging time selection of ship targets for shore-based inverse synthetic aperture radar (ISAR) in high sea conditions is investigated. The optimal imaging time includes opti- mal imaging instants and optimal imaging duration. A novel method for optimal imaging instants selection based on the estimation of the Doppler centroid frequencies (DCFs) of a series of images obtained over continuous short durations is proposed. Combined with the optimal imaging duration selection scheme using the image contrast maximization criteria, this method can provide the ship images with the highest focus. Simulated and real data pro- cessing results verify the effectiveness of the proposed imaging method.