文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting col...文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.展开更多
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwa...In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.展开更多
为能在开阔水域中提升船舶驾驶员在多船会遇场景下的避碰决策能力,按照国际海上避碰规则(Convention on the International Regulations for Prerenting Collisions at Sea,COLREGs)的要求,综合考虑船舶航行的安全性与经济性,提出一种...为能在开阔水域中提升船舶驾驶员在多船会遇场景下的避碰决策能力,按照国际海上避碰规则(Convention on the International Regulations for Prerenting Collisions at Sea,COLREGs)的要求,综合考虑船舶航行的安全性与经济性,提出一种基于粒子群-遗传(Partide Swam Optimization-Genetic Algorithm,PSO-GA)的混合优化避碰决策算法。基于最近会遇距离(Distance of Close Point of Approaching,dCPA)和最近会遇时间(Time to Close Point of Approaching,tCPA)确定船舶碰撞危险度(Collision Risk Index,ICR)的计算方法,基于转向幅度与航行时间建立避碰决策目标函数。基于PSO-GA算法具有提高收敛精度和加速全局寻优的特点,当ICR≥0.5时,启动PSO-GA算法,获得让路船舶在全局范围内的最佳转向幅度和在新航向上的航行时间。仿真结果表明:与单独使用PSO或GA算法相比,PSO-GA算法能够以较少的迭代次数找到安全经济避碰航线。提出的避碰决策算法能够为船舶驾驶人员在避碰决策中提供参考,有助于提升船舶航行的安全性和降低船舶碰撞事故发生的风险。展开更多
文摘文中针对多船会遇避碰决策中过渡依赖单一寻优决策的问题采用了加入自适应权重的樽海鞘群优化算法(weight salp swarm algorithm, WSSA),在算法中融入国际海上避碰规则(convention on the international regulations for presenting collisions at sea, COLREGs)和良好船艺的要求.使用速度障碍法判断船舶的碰撞危险度并将多船会遇避让的过程中避让的安全性、经济性以及船舶领域侵入程度作为建立避碰决策的目标函数.算法测试的结果中,WSSA与原始樽海鞘群算法(SSA)以及经典粒子群算法(partide swam optimization, PSO)相比较,WSSA算法在收敛的精度和速度方面都明显优于SSA和PSO算法.结果表明:WSSA在寻找最优碰撞路线的过程中迭代的次数更少,精度更高.
文摘In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a nnmerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defmed. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
文摘为能在开阔水域中提升船舶驾驶员在多船会遇场景下的避碰决策能力,按照国际海上避碰规则(Convention on the International Regulations for Prerenting Collisions at Sea,COLREGs)的要求,综合考虑船舶航行的安全性与经济性,提出一种基于粒子群-遗传(Partide Swam Optimization-Genetic Algorithm,PSO-GA)的混合优化避碰决策算法。基于最近会遇距离(Distance of Close Point of Approaching,dCPA)和最近会遇时间(Time to Close Point of Approaching,tCPA)确定船舶碰撞危险度(Collision Risk Index,ICR)的计算方法,基于转向幅度与航行时间建立避碰决策目标函数。基于PSO-GA算法具有提高收敛精度和加速全局寻优的特点,当ICR≥0.5时,启动PSO-GA算法,获得让路船舶在全局范围内的最佳转向幅度和在新航向上的航行时间。仿真结果表明:与单独使用PSO或GA算法相比,PSO-GA算法能够以较少的迭代次数找到安全经济避碰航线。提出的避碰决策算法能够为船舶驾驶人员在避碰决策中提供参考,有助于提升船舶航行的安全性和降低船舶碰撞事故发生的风险。