期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimization on the Impeller of a Low-specific-speed Centrifugal Pump for Hydraulic Performance Improvement 被引量:13
1
作者 PEI Ji WANG Wenjie +1 位作者 YUAN Shouqi ZHANG Jinfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期992-1002,共11页
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the bla... In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations. 展开更多
关键词 low-specific-speed centrifugal pump OPTIMIZATION optimal latin hypercube sampling surrogate model particle swarm optimization algorithm numerical simulation
下载PDF
Global Optimization Method Using SLE and Adaptive RBF Based on Fuzzy Clustering 被引量:7
2
作者 ZHU Huaguang LIU Li LONG Teng ZHAO Junfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第4期768-775,共8页
High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis mode... High fidelity analysis models,which are beneficial to improving the design quality,have been more and more widely utilized in the modern engineering design optimization problems.However,the high fidelity analysis models are so computationally expensive that the time required in design optimization is usually unacceptable.In order to improve the efficiency of optimization involving high fidelity analysis models,the optimization efficiency can be upgraded through applying surrogates to approximate the computationally expensive models,which can greately reduce the computation time.An efficient heuristic global optimization method using adaptive radial basis function(RBF) based on fuzzy clustering(ARFC) is proposed.In this method,a novel algorithm of maximin Latin hypercube design using successive local enumeration(SLE) is employed to obtain sample points with good performance in both space-filling and projective uniformity properties,which does a great deal of good to metamodels accuracy.RBF method is adopted for constructing the metamodels,and with the increasing the number of sample points the approximation accuracy of RBF is gradually enhanced.The fuzzy c-means clustering method is applied to identify the reduced attractive regions in the original design space.The numerical benchmark examples are used for validating the performance of ARFC.The results demonstrates that for most application examples the global optima are effectively obtained and comparison with adaptive response surface method(ARSM) proves that the proposed method can intuitively capture promising design regions and can efficiently identify the global or near-global design optimum.This method improves the efficiency and global convergence of the optimization problems,and gives a new optimization strategy for engineering design optimization problems involving computationally expensive models. 展开更多
关键词 global optimization latin hypercube design radial basis function fuzzy clustering adaptive response surface method
下载PDF
Multi-objectives nonlinear structure optimization for actuator in trajectory correction fuze subject to high impact loadings 被引量:1
3
作者 Jiang-hai Hui Min Gao +3 位作者 Ming Li Ming-rui Li Hui-hui Zou Gang Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1338-1351,共14页
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,... This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient. 展开更多
关键词 ACTUATOR Trajectory correction fuze Impact loadings Optimized latin hypercube design Kriging model Optimization algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部