As the large change of the grid load, many large capacity units of our country had to change the load in order to meet the gird need. When a thermal power plant receives a given load instruction from the grid, it is n...As the large change of the grid load, many large capacity units of our country had to change the load in order to meet the gird need. When a thermal power plant receives a given load instruction from the grid, it is necessary to set an optimal steam pressure to maintain the high efficiency of the plant. In the past optimization methods, during the process of calculation, the output of the turbine often changed, it was hard to maintain the output constant. Therefore, in combination with the theory of variable condition of turbine, calculation of governing stage and the matrix equation of thermal power system, an optimization method were put forward and an optimal solution was got in a given load.展开更多
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ...Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.展开更多
This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for exam...This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.展开更多
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme...To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to th...With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and...A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and cooperating with the randomly selected neighbors, and adjusting its global searching ability and local exploring ability, this algorithm achieves the goal of high convergence precision and speed. To verify the effectiveness of the proposed algorithm, this algorithm is tested by three different ELD cases, including 3, 13 and 40 units IEEE cases, and the experiment results are compared with those tested by other intelligent algorithms in the same cases. The compared results show that feasible solutions can be reached effectively, local optima can be avoided and faster solution can be applied with the proposed algorithm, the algorithm for ELD problem is versatile and efficient.展开更多
This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather foreca...This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.展开更多
深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved dee...深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。展开更多
文摘As the large change of the grid load, many large capacity units of our country had to change the load in order to meet the gird need. When a thermal power plant receives a given load instruction from the grid, it is necessary to set an optimal steam pressure to maintain the high efficiency of the plant. In the past optimization methods, during the process of calculation, the output of the turbine often changed, it was hard to maintain the output constant. Therefore, in combination with the theory of variable condition of turbine, calculation of governing stage and the matrix equation of thermal power system, an optimization method were put forward and an optimal solution was got in a given load.
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2020090.
文摘Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output.
文摘This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.
基金supported by the Special Research Project on Power Planning of the Guangdong Power Grid Co.,Ltd.
文摘To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
文摘With the rapid and large-scale development of renewable energy, the lack of new energy power transportation or consumption, and the shortage of grid peak-shifting ability have become increasingly serious. Aiming to the severe wind power curtailment issue, the characteristics of interactive load are studied upon the traditional day-ahead dispatch model to mitigate the influence of wind power fluctuation. A multi-objective optimal dispatch model with the minimum operating cost and power losses is built. Optimal power flow distribution is available when both generation and demand side participate in the resource allocation. The quantum particle swarm optimization (QPSO) algorithm is applied to convert multi-objective optimization problem into single objective optimization problem. The simulation results of IEEE 30-bus system verify that the proposed method can effectively reduce the operating cost and grid loss simultaneously enhancing the consumption of wind power.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
文摘A new versatile optimization, the particle swarm optimization based on multi-agent system (MAPSO) is presented. The economic load dispatch (ELD) problem of power system can be solved by the algorithm. By competing and cooperating with the randomly selected neighbors, and adjusting its global searching ability and local exploring ability, this algorithm achieves the goal of high convergence precision and speed. To verify the effectiveness of the proposed algorithm, this algorithm is tested by three different ELD cases, including 3, 13 and 40 units IEEE cases, and the experiment results are compared with those tested by other intelligent algorithms in the same cases. The compared results show that feasible solutions can be reached effectively, local optima can be avoided and faster solution can be applied with the proposed algorithm, the algorithm for ELD problem is versatile and efficient.
文摘This paper describes the performance, generated power flow distribution and redistribution for each power plant on the grid based on adapting load and weather forecasting data. Both load forecasting and weather forecasting are used for collecting predicting data which are required for optimizing the performance of the grid. The stability of each power systems on the grid highly affected by load varying, and with the presence of the wind power systems on the grid, the grid will be more exposed to lowering its performance and increase the instability to other power systems on the gird. This is because of the intermittence behavior of the generated power from wind turbines as they depend on the wind speed which is varying all the time. However, with a good prediction of the wind speed, a close to the actual power of the wind can be determined. Furthermore, with knowing the load characteristics in advance, the new load curve can be determined after being subtracted from the wind power. Thus, with having the knowledge of the new load curve, and data that collected from SACADA system of the status of all power plants, the power optimization, load distribution and redistribution of the power flows between power plants can be successfully achieved. That is, the improvement of performance, more reliable, and more stable power grid.
文摘深度强化学习算法以数据为驱动,且不依赖具体模型,能有效应对虚拟电厂运营中的复杂性问题。然而,现有算法难以严格执行操作约束,在实际系统中的应用受到限制。为了克服这一问题,提出了一种基于深度强化学习的改进深度Q网络(improved deep Q-network,MDQN)算法。该算法将深度神经网络表达为混合整数规划公式,以确保在动作空间内严格执行所有操作约束,从而保证了所制定的调度在实际运行中的可行性。此外,还进行了敏感性分析,以灵活地调整超参数,为算法的优化提供了更大的灵活性。最后,通过对比实验验证了MDQN算法的优越性能。该算法为应对虚拟电厂运营中的复杂性问题提供了一种有效的解决方案。