This paper studies the real-time optimal state estimation-based feedback control for twolevel stochastic quantum systems in the non-Markovian case.The system model is established by combining the time-convolutionless ...This paper studies the real-time optimal state estimation-based feedback control for twolevel stochastic quantum systems in the non-Markovian case.The system model is established by combining the time-convolutionless non-Markovian master equation and the stochastic master equation.A nonlinear filter based on the state-dependent Riccati equation is designed in order to achieve the realtime optimal estimation of quantum states.A quadratic function multiplied with an exponential term is selected as the Lyapunov function,and a continuous-time control law is deduced via the stochastic Lyapunov stability theorem to realize eigenstate feedback control based on real-time optimal state estimation.Numerical simulation results illustrate that the proposed control scheme is capable of steering the two-level quantum system from an arbitrary initial state to the desired eigenstate with a fidelity higher than 99%within a time of 3 a.u.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61973290。
文摘This paper studies the real-time optimal state estimation-based feedback control for twolevel stochastic quantum systems in the non-Markovian case.The system model is established by combining the time-convolutionless non-Markovian master equation and the stochastic master equation.A nonlinear filter based on the state-dependent Riccati equation is designed in order to achieve the realtime optimal estimation of quantum states.A quadratic function multiplied with an exponential term is selected as the Lyapunov function,and a continuous-time control law is deduced via the stochastic Lyapunov stability theorem to realize eigenstate feedback control based on real-time optimal state estimation.Numerical simulation results illustrate that the proposed control scheme is capable of steering the two-level quantum system from an arbitrary initial state to the desired eigenstate with a fidelity higher than 99%within a time of 3 a.u.