期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
OPTIMAL QUADRATURE OF THE SOBOLEV CLASS W_1~r(R) DEFINED ON WHOLE REAL AXIS
1
作者 房艮孙 刘永平 《Acta Mathematica Scientia》 SCIE CSCD 1996年第1期72-80,共9页
In this paper,we study the optimal quadrature problem with Hermite-Birkhoff type,on the Sobolev class(R)defined on whole red axis,and we give an optimal algorithm and determite its optimal error.
关键词 quadrature formula optimal algorithm optimal error.
下载PDF
Optimal Quadrature Problem on n-Information for Hardy-Sobolev Classes
2
作者 Xue Hua LI Gen Sun FANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第12期2371-2378,共8页
For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The opt... For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined. 展开更多
关键词 Hardy-Sobolev class analytic function optimal quadrature formula n-information
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部