This paper proposes a scheme for the implementation of 1→ 3 optimal phase-covariant quantum cloning with trapped ions. In the present protocol, the required time for the whole procedure is short due to the resonant i...This paper proposes a scheme for the implementation of 1→ 3 optimal phase-covariant quantum cloning with trapped ions. In the present protocol, the required time for the whole procedure is short due to the resonant interaction, which is important in view of decoherence. Furthermore, the scheme is feasible based on current technologies.展开更多
We exploit optimal probabilistic cloning to rederive the JS limit.Dependent on the formulation given by the optimal probabilistic cloning,the explicit transformation of a measure of the JS limit is presented.Based on ...We exploit optimal probabilistic cloning to rederive the JS limit.Dependent on the formulation given by the optimal probabilistic cloning,the explicit transformation of a measure of the JS limit is presented.Based on linear optical devices,we propose an experimentally feasible scheme to implement the JS limit measure of a general pair of two nonorthogonal quantum states.The success probability of the proposed scheme is unity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos10574022 and 10575022)the Funds of the Natural Science of Fujian Province,China(Grant Nos Z0512006 and A0210014)
文摘This paper proposes a scheme for the implementation of 1→ 3 optimal phase-covariant quantum cloning with trapped ions. In the present protocol, the required time for the whole procedure is short due to the resonant interaction, which is important in view of decoherence. Furthermore, the scheme is feasible based on current technologies.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074002,61073048 and 11104057)the Natural Science Foundation of the Education Department of Anhui Province of China(Grant Nos. KJ2010ZD08 and KJ2012A245)the Postgraduate Program of Huainan Normal University
文摘We exploit optimal probabilistic cloning to rederive the JS limit.Dependent on the formulation given by the optimal probabilistic cloning,the explicit transformation of a measure of the JS limit is presented.Based on linear optical devices,we propose an experimentally feasible scheme to implement the JS limit measure of a general pair of two nonorthogonal quantum states.The success probability of the proposed scheme is unity.