Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement i...Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.展开更多
At present,a large number of historic buildings on campus are lack of energy-saving measures from the design time,especially the dormitories. And the reconstruction mostly focuses on functional reorganization or furni...At present,a large number of historic buildings on campus are lack of energy-saving measures from the design time,especially the dormitories. And the reconstruction mostly focuses on functional reorganization or furniture replacement. However,energy efficiency design has not been paid enough attention,which leads to the high building energy consumption and the harsh physical environment. Based on the analysis of climatic characteristics of Chongqing area,taking Dormitory Six on campus B of Chongqing University as an example,the reconstruction of rooms on the top floor and West end are focused to guarantee the equal benefits of the dormitory environment. Through the simulation analysis of the software, on the basis of energy saving reconstruction of common maintenance structure,this thesis discusses the energy saving reconstruction methods and strategies of the existing campus dormitories,which are more suitable for the existing campus dormitories in Chongqing area.展开更多
Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, h...Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, high precision OCT algorithms with few views ought to be studied for EST application. To improve the reconstruction precision in the case of few views, a new computed tomography reconstruction algorithm based on multipurpose optimal criterion and simulated annealing theory (multi-criterion simulated annealing reconstruction technique, MCSART) is proposed. This algorithm can suffice criterion of least squares, criterion of most uniformity, and criterion of most smoothness synchronously. We can get global optimal solution by MCSART algorithm with simulated annealing theory. The simulating experiment result shows that this algorithm is superior to the traditional algorithms under various noises.展开更多
A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation bas...A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.展开更多
This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure informat...This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.展开更多
基金The Hong Kong Polytechnic University through the group project "Fundamentals of Earthquake Engineering for Hong Kong"(4-ZZCD)the collaborative research project with Beijing University of Technology(4-ZZGD)
文摘Estimation of lateral displacement and acceleration responses is essential to assess safety and serviceability of high-rise buildings under dynamic loadings including earthquake excitations. However, the measurement information from the limited number of sensors installed in a building structure is often insufficient for the complete structural performance assessment. An integrated multi-type sensor placement and response reconstruction method has thus been proposed by the authors to tackle this problem. To validate the feasibility and effectiveness of the proposed method, an experimental investigation using a cantilever beam with multi-type sensors is performed and reported in this paper. The experimental setup is first introduced. The finite element modelling and model updating of the cantilever beam are then performed. The optimal sensor placement for the best response reconstruction is determined by the proposed method based on the updated FE model of the beam. After the sensors are installed on the physical cantilever beam, a number of experiments are carried out. The responses at key locations are reconstructed and compared with the measured ones. The reconstructed responses achieve a good match with the measured ones, manifesting the feasibility and effectiveness of the proposed method. Besides, the proposed method is also examined for the cases of different excitations and unknown excitation, and the results prove the proposed method to be robust and effective. The superiority of the optimized sensor placement scheme is finally demonstrated through comparison with two other different sensor placement schemes: the accelerometer-only scheme and non-optimal sensor placement scheme. The proposed method can be applied to high-rise buildings for seismic performance assessment.
文摘At present,a large number of historic buildings on campus are lack of energy-saving measures from the design time,especially the dormitories. And the reconstruction mostly focuses on functional reorganization or furniture replacement. However,energy efficiency design has not been paid enough attention,which leads to the high building energy consumption and the harsh physical environment. Based on the analysis of climatic characteristics of Chongqing area,taking Dormitory Six on campus B of Chongqing University as an example,the reconstruction of rooms on the top floor and West end are focused to guarantee the equal benefits of the dormitory environment. Through the simulation analysis of the software, on the basis of energy saving reconstruction of common maintenance structure,this thesis discusses the energy saving reconstruction methods and strategies of the existing campus dormitories,which are more suitable for the existing campus dormitories in Chongqing area.
基金This work was supported by the Chinese Natural Science Foundation of China(No.60577016)the Foundation(No. 0512034)of Jiangxi Natural Science+1 种基金the Science and Technology Program(No. 2006-164)of Jiangxi Provincial Department of Educationthe Program(No.2005-314)of Key Laboratory of Nondestructive Testing Technology,Ministry of Education.
文摘Although emission spectral tomography (EST) combines emission spectral measurement with optical computed tomography (OCT), it is difficult to gain transient emission data from a large number of views, therefore, high precision OCT algorithms with few views ought to be studied for EST application. To improve the reconstruction precision in the case of few views, a new computed tomography reconstruction algorithm based on multipurpose optimal criterion and simulated annealing theory (multi-criterion simulated annealing reconstruction technique, MCSART) is proposed. This algorithm can suffice criterion of least squares, criterion of most uniformity, and criterion of most smoothness synchronously. We can get global optimal solution by MCSART algorithm with simulated annealing theory. The simulating experiment result shows that this algorithm is superior to the traditional algorithms under various noises.
文摘A linear quadric (LQ) optimal speed control algorithm is proposed for the speed control of a pump controlled motor hydraulic system. The control theme consists of optimal state feedback and disturbing compensation based on observation. The optimal state feedback bases on LQ cost function. The disturbing compensation is realized through reconstructing the state of load torque. A series of simulation are performed, and the results show that the control performance is satisfactory and can be maintained under changes of load torque.
基金supported by National Natural Science Foundation of China(No.61201425)the Natural Science Foundation of Jiangsu Province(No.BK20131280)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.