A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as mea...A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.展开更多
In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery p...In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery problem for such differential operator is considered.展开更多
Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categor...Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.展开更多
Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton m...Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.展开更多
In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve t...In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve the prediction accuracy for track and intensity,and two different typhoons are selected as cases for analysis.We first select perturbed parameters in the YSU and WSM6 schemes,and then solve CNOP-Ps with simulated annealing algorithm for single parameters as well as the combination of multiple parameters.Finally,perturbations are imposed on default parameter values to generate the ensemble members.The whole proposed procedures are referred to as the PerturbedParameter Ensemble(PPE).We also conduct two experiments,which are control forecast and ensemble forecast,termed Ctrl and perturbed-physics ensemble(PPhyE)respectively,to demonstrate the performance for contrast.In the article,we compare the effects of three experiments on tropical cyclones in aspects of track and intensity,respectively.For track,the prediction errors of PPE are smaller.The ensemble mean of PPE filters the unpredictable situation and retains the reasonably predictable components of the ensemble members.As for intensity,ensemble mean values of the central minimum sea-level pressure and the central maximum wind speed are closer to CMA data during most of the simulation time.The predicted values of the PPE ensemble members included the intensity of CMA data when the typhoon made landfall.The PPE also shows uncertainty in the forecast.Moreover,we also analyze the track and intensity from physical variable fields of PPE.Experiment results show PPE outperforms the other two benchmarks in track and intensity prediction.展开更多
The multiobjective group decision-making problem under risk is common in reality. This paper focuses on the study about risky multiobjective group decision-making problem where the index value is not certain. We give ...The multiobjective group decision-making problem under risk is common in reality. This paper focuses on the study about risky multiobjective group decision-making problem where the index value is not certain. We give indexes classifying method and index normalizing formula of this type problem. By building objective function that minimizes general weighted distance from every alternative to the relatively best and worst alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, and by building another objective function that minimizes general weighted distance from the optimal membership degree of every decision-maker to every alternative to the group optimal alternative and the group inferior alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, which are both based on probability theory and fuzzy theory. Aftermost a model is established which collects group preferences. This method provides a new idea and approach for solving multiobjective decision-making problem among uncertain system, which is applicable for practical problem. Finally a case study shows a satisfactory result.展开更多
A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse...A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.展开更多
基金Project(71001079)supported by the National Natural Science Foundation of China
文摘A theoretical study was conducted on finding optimal paths in transportation networks where link travel times were stochastic and time-dependent(STD). The methodology of relative robust optimization was applied as measures for comparing time-varying, random path travel times for a priori optimization. In accordance with the situation in real world, a stochastic consistent condition was provided for the STD networks and under this condition, a mathematical proof was given that the STD robust optimal path problem can be simplified into a minimum problem in specific time-dependent networks. A label setting algorithm was designed and tested to find travelers' robust optimal path in a sampled STD network with computation complexity of O(n2+n·m). The validity of the robust approach and the designed algorithm were confirmed in the computational tests. Compared with conventional probability approach, the proposed approach is simple and efficient, and also has a good application prospect in navigation system.
基金Supported by the National Fund of Natural Sciences.
文摘In this paper a generalized version of the classical Hardy-Littlewood-Polya inequality is given.Furthermore,the Stechkin's problem for a linear differential operator is solved in L_2(R), and the optimal recovery problem for such differential operator is considered.
文摘Selection of air conditioning(AC) cold/heat sources generally concerns about certain aspects and cannot reveal the whole profile of the problems. Grey relation analysis (GRA) is a data processing method to categorize the correlation extent of compared sequences and a certain reference sequence in a system with uncertain information. It is applied to evaluating and selecting AC cold/heat sources from four main aspects, which are technology, economy, reliability, and operation and management. Case study shows that the result for selecting AC cold/heat sources with the GRA method can be more reasonable and convincible. Thus it offers a new approach for designers in heating, ventilating and air conditioning field to compare and evaluate different AC cold/heat sou rces.
基金Supported by the Qingdao National Laboratory for Marine Science and Technology(No.2016OPR0107)the National Natural Science Foundation of China(No.41806013)。
文摘Parameter uncertainty is a primary source of uncertainty in ocean ecosystem simulations.The deep chlorophyll maximum(DCM)is a ubiquitous ecological phenomenon in the ocean.Using a theoretical nutrients-phytoplankton model and the conditional nonlinear optimal perturbation approach related to parameters,we investigated the eff ects of parameter uncertainties on DCM simulations.First,the sensitivity of single parameter was analyzed.The sensitivity ranking of 10 parameters was obtained by analyzing the top four specifi cally.The most sensitive parameter(background turbidity)aff ects the light supply for DCM formation,whereas the other three parameters(nutrient content of phytoplankton,nutrient recycling coeffi cient,and vertical turbulent diff usivity)control nutrient supply.To explore the interactions among diff erent parameters,the sensitivity of multiple parameters was further studied by examining combinations of four parameters.The results show that background turbidity is replaced by the phytoplankton loss rate in the optimal parameter combination.In addition,we found that interactions among these parameters are responsible for such diff erences.Finally,we found that reducing the uncertainties of sensitive parameters could improve DCM simulations remarkably.Compared with the sensitive parameters identifi ed in the single parameter analysis,reducing parameter uncertainties in the optimal combination produced better model performance.This study shows the importance of nonlinear interactions among various parameters in identifying sensitive parameters.In the future,the conditional nonlinear optimal perturbation approach related to parameters,especially optimal parameter combinations,is expected to greatly improve DCM simulations in complex ecosystem models.
基金National Key Research and Development Program of China(2020YFA0608002)Key Project Fund of Shanghai 2020“Science and Technology Innovation Action Plan”for Social Development(20dz1200702)+2 种基金National Natural Science Foundation of China(42075141)Meteorological Joint Funds of the National Natural Science Foundation of China(U2142211)Fundamental Research Funds for the Central Universities(13502150039/003)。
文摘In this paper,we set out to study the ensemble forecast for tropical cyclones.The case study is based on the Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)method and the WRF model to improve the prediction accuracy for track and intensity,and two different typhoons are selected as cases for analysis.We first select perturbed parameters in the YSU and WSM6 schemes,and then solve CNOP-Ps with simulated annealing algorithm for single parameters as well as the combination of multiple parameters.Finally,perturbations are imposed on default parameter values to generate the ensemble members.The whole proposed procedures are referred to as the PerturbedParameter Ensemble(PPE).We also conduct two experiments,which are control forecast and ensemble forecast,termed Ctrl and perturbed-physics ensemble(PPhyE)respectively,to demonstrate the performance for contrast.In the article,we compare the effects of three experiments on tropical cyclones in aspects of track and intensity,respectively.For track,the prediction errors of PPE are smaller.The ensemble mean of PPE filters the unpredictable situation and retains the reasonably predictable components of the ensemble members.As for intensity,ensemble mean values of the central minimum sea-level pressure and the central maximum wind speed are closer to CMA data during most of the simulation time.The predicted values of the PPE ensemble members included the intensity of CMA data when the typhoon made landfall.The PPE also shows uncertainty in the forecast.Moreover,we also analyze the track and intensity from physical variable fields of PPE.Experiment results show PPE outperforms the other two benchmarks in track and intensity prediction.
文摘The multiobjective group decision-making problem under risk is common in reality. This paper focuses on the study about risky multiobjective group decision-making problem where the index value is not certain. We give indexes classifying method and index normalizing formula of this type problem. By building objective function that minimizes general weighted distance from every alternative to the relatively best and worst alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, and by building another objective function that minimizes general weighted distance from the optimal membership degree of every decision-maker to every alternative to the group optimal alternative and the group inferior alternative, the optimal membership degree of every decision-maker to every alternative can be obtained, which are both based on probability theory and fuzzy theory. Aftermost a model is established which collects group preferences. This method provides a new idea and approach for solving multiobjective decision-making problem among uncertain system, which is applicable for practical problem. Finally a case study shows a satisfactory result.
基金supported by the Innovation Foundation of BUAA for PhD Graduates (No.YWF-12-RBYJ-024)the National Natural Science Foundation of China (No.11002008)National Basic Research Program of China (No.2009CB723906)
文摘A new set of relative orbit elements(ROEs)is used to derive a new elliptical formation flying model.In-plane and out-of-plane motions can be completely decoupled,which benefts elliptical formation design.The inverse transformation of the state transition matrix is derived to study the relative orbit control strategy.Impulsive feedback control laws are developed for both in-plane and out-of-plane relative motions.Control of in-plane and out-of-plane relative motions can be completely decoupled using the ROE-based feedback control law.A tangential impulsive control method is proposed to study the relationship of fuel consumption and maneuvering positions.An optimal analytical along-track impulsive control strategy is then derived.Different typical orbit maneuvers,including formation establishment,reconfguration,long-distance maneuvers,and formation keeping,are taken as examples to demonstrate the performance of the proposed control laws.The effects of relative measurement errors are also considered to validate the high accuracy of the proposed control method.