In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential inve...In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.展开更多
The concept of optimal sensitivity perturbation (OSP) is developed based on adjoint sensitivity analysis theory. The persistent anomalous features in East Asian summer monsoon system, including the Ural blocking, the ...The concept of optimal sensitivity perturbation (OSP) is developed based on adjoint sensitivity analysis theory. The persistent anomalous features in East Asian summer monsoon system, including the Ural blocking, the Okhotsk Sea dipole blocking and the variations of subtropical high are analyzed and the OSP for each of them evaluated. The results provide us with some new insight into the most significant influential factors for these features. It also demonstrates the great potential for further applications of this method in diagnostics of atmospheric processes.展开更多
In this paper, a minimax design of damped dynamic vibration absorber for a damped primary system is investigated to minimize the vibration magnitude peaks. Moreover, to reduce the sensitivity of the primary system res...In this paper, a minimax design of damped dynamic vibration absorber for a damped primary system is investigated to minimize the vibration magnitude peaks. Moreover, to reduce the sensitivity of the primary system response to variations of the forcing frequency for a two- degree-of-freedom system, the primary system should have two equal resonance magnitude peaks. To meet this re- quirement, a set of simplified constraint equations includ- ing distribution characteristics of the resonant frequencies of the primary system is established for the minimax objective function. The modified constraint equations have less un- known variables than those by other authors, which not only simplifies the computation but also improves the accuracy of the optimal values. The advantage of the proposed method is illustrated through numerical simulations.展开更多
The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing...The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing the proposed optimal control model, a sensitivity analysis has been performed that includes the interest rate impact on the optimal solution. This study shows that the increasing of the interest rate sti- mulates faster extraction of the resources. The discounting factor induces that the resource has to be extracted faster hut this effect is counterbalanced by the diminishing returns of the annual cash flow. At higher parameters of "alpha" close to one of the power function about 80% from the whole resource will be extracted during the first 4 years of object/mine maintenance. An existence of unique positive root with respect to return of investment has been proposed and proved by two ways: by the "method of chords" and by using specialized software.展开更多
We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) wavegui...We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.展开更多
In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional co...In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.展开更多
In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by c...In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by conditional nonlinear optimal perturbations (CNOPs) could improve the short-range forecast of typhoons. The results show that the CNOPs capture the sensitive regions for typhoon forecasts, which implies that conducting additional observation in these specific regions and eliminating initial errors could reduce forecast errors. It is inferred from the results that dropping sondes in the CNOP sensitive regions could lead to improvements in typhoon forecasts.展开更多
文摘In recent years, there has been global interest in meeting targets relating to energy affordability and security while taking into account greenhouse gas emissions. This has heightened major interest in potential investigations into the use of supercritical carbon dioxide (sCO2) power cycles. Climate change mitigation is the ultimate driver for this increased interest;other relevant issues include the potential for high cycle efficiency and a circular economy. In this study, a 25 MWe recompression closed Brayton cycle (RCBC) has been assessed, and sCO2 has been proposed as the working fluid for the power plant. The methodology used in this research work comprises thermodynamic and techno-economic analysis for the prospective commercialization of this sCO2 power cycle. An evaluated estimation of capital expenditure, operational expenditure, and cost of electricity has been considered in this study. The ASPEN Plus simulation results have been compared with theoretical and mathematical calculations to assess the performance of the compressors, turbine, and heat exchangers. The results thus reveal that the cycle efficiency for this prospective sCO2 recompression closed Brayton cycle increases (39% - 53.6%) as the temperature progressively increases from 550˚C to 900˚C. Data from the Aspen simulation model was used to aid the cost function calculations to estimate the total capital investment cost of the plant. Also, the techno-economic results have shown less cost for purchasing equipment due to fewer components being required for the cycle configuration as compared to the conventional steam power plant.
文摘The concept of optimal sensitivity perturbation (OSP) is developed based on adjoint sensitivity analysis theory. The persistent anomalous features in East Asian summer monsoon system, including the Ural blocking, the Okhotsk Sea dipole blocking and the variations of subtropical high are analyzed and the OSP for each of them evaluated. The results provide us with some new insight into the most significant influential factors for these features. It also demonstrates the great potential for further applications of this method in diagnostics of atmospheric processes.
基金supported by the National Natural Science Foundation of China (11072014 and 11172018)
文摘In this paper, a minimax design of damped dynamic vibration absorber for a damped primary system is investigated to minimize the vibration magnitude peaks. Moreover, to reduce the sensitivity of the primary system response to variations of the forcing frequency for a two- degree-of-freedom system, the primary system should have two equal resonance magnitude peaks. To meet this re- quirement, a set of simplified constraint equations includ- ing distribution characteristics of the resonant frequencies of the primary system is established for the minimax objective function. The modified constraint equations have less un- known variables than those by other authors, which not only simplifies the computation but also improves the accuracy of the optimal values. The advantage of the proposed method is illustrated through numerical simulations.
文摘The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro- pose an optimal extraction series of these resources during the lifetime of the Mine's maintenance. Fol- lowing the proposed optimal control model, a sensitivity analysis has been performed that includes the interest rate impact on the optimal solution. This study shows that the increasing of the interest rate sti- mulates faster extraction of the resources. The discounting factor induces that the resource has to be extracted faster hut this effect is counterbalanced by the diminishing returns of the annual cash flow. At higher parameters of "alpha" close to one of the power function about 80% from the whole resource will be extracted during the first 4 years of object/mine maintenance. An existence of unique positive root with respect to return of investment has been proposed and proved by two ways: by the "method of chords" and by using specialized software.
基金supported by the National Basic Research Program of China(Grant No.2013CB632900)
文摘We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 -x)Pb(Znl/3Nbz/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the xj and x2 axes, respectively. The normalized maximum sensitivity (|sfm|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|sfm|λ)max increases with the elastic constant c6E6 of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the xa axis at λ = 24 ktm, the maximum sensitivity |sfm|max can reach as high as 1156 cmZ/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity.
基金supported by the National Natura Science Foundation of China (Grant 51275424)973 Program (Gran2011CB610304)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (Grant 20126102130003)the opening project (Grant KFJJ13-6M) of the State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)
文摘In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion.Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.
基金sponsored by the National Natural Science Foundation of China (Grant Nos. 40830955 and 40821092)the Project of China Meteorological Administration (Grant No. GYHY200906009)
文摘In this paper, several sets of observing system simulation experiments (OSSEs) were designed for three typhoon cases to determine whether or not the additional observation data in the sensitive regions identified by conditional nonlinear optimal perturbations (CNOPs) could improve the short-range forecast of typhoons. The results show that the CNOPs capture the sensitive regions for typhoon forecasts, which implies that conducting additional observation in these specific regions and eliminating initial errors could reduce forecast errors. It is inferred from the results that dropping sondes in the CNOP sensitive regions could lead to improvements in typhoon forecasts.