Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero....Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ...During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.展开更多
With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation ...With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.展开更多
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ...A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.展开更多
In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we f...In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we from some numerical results, discuss how to choose the number m to determine the approximating matrix properly in practical use.展开更多
Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures t...Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures that the imaging tasks are scheduled without affecting the search and tracking tasks; Then,the optimal scheduling model of radar resource is established according to the constraints of pulse interleaving; Finally,a heuristic algorithm is used to solve the problem and a sparse-aperture cognitive ISAR imaging method is used to achieve partial precision tracking target imaging. Simulation results demonstrate that the proposed algorithm can both improve the performance of the radar system,and generate satisfactory imaging results.展开更多
Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel threshold...Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel thresholding technique referred to as the optimal k-thresholding was recently proposed by Zhao(SIAM J Optim 30(1):31-55,2020).This technique simultaneously performs the minimization of an error metric for the problem and thresholding of the iterates generated by the classic gradient method.In this paper,we propose the so-called Newton-type optimal k-thresholding(NTOT)algorithm which is motivated by the appreciable performance of both Newton-type methods and the optimal k-thresholding technique for signal recovery.The guaranteed performance(including convergence)of the proposed algorithms is shown in terms of suitable choices of the algorithmic parameters and the restricted isometry property(RIP)of the sensing matrix which has been widely used in the analysis of compressive sensing algorithms.The simulation results based on synthetic signals indicate that the proposed algorithms are stable and efficient for signal recovery.展开更多
Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This ...Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This type of problem is associated with many interesting challenges encoun- tered in the image restoration and image reconstruction fields. We developed a splitting primal-dual proximity algorithm to solve this problem. Furthermore, we propose a preconditioned method~ of which the iterative parameters are obtained without the need to know some particular operator norm in advance. Theoretical convergence theorems are presented. We then apply the proposed methods to solve a total variation regularization model, in which the L2 data error function is added to the L1 data error function. The main advantageous feature of this model is its capability to combine different loss functions. The numerical results obtained for computed tomography (CT) image recon- struction demonstrated the ability of the proposed algorithm to reconstruct an image with few and sparse projection views while maintaining the image quality.展开更多
Recently, iteratively reweighted methods have attracted much interest in compressed sensing, outperforming their unweighted counterparts in most cases. In these methods, decision variables and weights are optimized al...Recently, iteratively reweighted methods have attracted much interest in compressed sensing, outperforming their unweighted counterparts in most cases. In these methods, decision variables and weights are optimized alternatingly, or decision variables are optimized under heuristically chosen weights. In this paper,we present a novel weighted l1-norm minimization problem for the sparsest solution of underdetermined linear equations. We propose an iteratively weighted thresholding method for this problem, wherein decision variables and weights are optimized simultaneously. Furthermore, we prove that the iteration process will converge eventually. Using the homotopy technique, we enhance the performance of the iteratively weighted thresholding method. Finally, extensive computational experiments show that our method performs better in terms of both running time and recovery accuracy compared with some state-of-the-art methods.展开更多
Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different...Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.展开更多
基金supported by the Scientific Research Project of Xiang Jiang Lab(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(ZC23112101-10)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJ-Z03)the Science and Technology Innovation Program of Humnan Province(2023RC1002)。
文摘Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金This work was supported in part by the National Key Research and Development Program of China(2018AAA0100100)the National Natural Science Foundation of China(61822301,61876123,61906001)+2 种基金the Collaborative Innovation Program of Universities in Anhui Province(GXXT-2020-051)the Hong Kong Scholars Program(XJ2019035)Anhui Provincial Natural Science Foundation(1908085QF271).
文摘During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs.
基金National Key Research and Development of China(No.2019YFB1600700)Sichuan Science and Technology Planning Project(No.2021YFSY0003)。
文摘With the rapid development in the service,medical,logistics and other industries,and the increasing demand for unmanned mobile devices,mobile robots with the ability of independent mapping,localization and navigation capabilities have become one of the research hotspots.An accurate map construction is a prerequisite for a mobile robot to achieve autonomous localization and navigation.However,the problems of blurring and missing the borders of obstacles and map boundaries are often faced in the Gmapping algorithm when constructing maps in complex indoor environments.In this pursuit,the present work proposes the development of an improved Gmapping algorithm based on the sparse pose adjustment(SPA)optimizations.The improved Gmapping algorithm is then applied to construct the map of a mobile robot based on single-line Lidar.Experiments show that the improved algorithm could build a more accurate and complete map,reduce the number of particles required for Gmapping,and lower the hardware requirements of the platform,thereby saving and minimizing the computing resources.
基金supported by the National Natural Science Foundation of China(6127130061405150)
文摘A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm.
文摘In this paper, we present m time secant like multi projection algorithm for sparse unconstrained minimization problem. We prove this method are all q superlinearly convergent to the solution about m≥1 . At last, we from some numerical results, discuss how to choose the number m to determine the approximating matrix properly in practical use.
基金Supported by the National Natural Science Foundation of China(61471386)
文摘Aiming at the problem of resource allocation for digital array radar( DAR),a dwell scheduling algorithm is proposed in this paper. Firstly,the integrated priority of different radar tasks is designed,which ensures that the imaging tasks are scheduled without affecting the search and tracking tasks; Then,the optimal scheduling model of radar resource is established according to the constraints of pulse interleaving; Finally,a heuristic algorithm is used to solve the problem and a sparse-aperture cognitive ISAR imaging method is used to achieve partial precision tracking target imaging. Simulation results demonstrate that the proposed algorithm can both improve the performance of the radar system,and generate satisfactory imaging results.
基金founded by the National Natural Science Foundation of China(No.12071307).
文摘Sparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique.Different from existing thresholding methods,a novel thresholding technique referred to as the optimal k-thresholding was recently proposed by Zhao(SIAM J Optim 30(1):31-55,2020).This technique simultaneously performs the minimization of an error metric for the problem and thresholding of the iterates generated by the classic gradient method.In this paper,we propose the so-called Newton-type optimal k-thresholding(NTOT)algorithm which is motivated by the appreciable performance of both Newton-type methods and the optimal k-thresholding technique for signal recovery.The guaranteed performance(including convergence)of the proposed algorithms is shown in terms of suitable choices of the algorithmic parameters and the restricted isometry property(RIP)of the sensing matrix which has been widely used in the analysis of compressive sensing algorithms.The simulation results based on synthetic signals indicate that the proposed algorithms are stable and efficient for signal recovery.
基金Supported by the NSFC(Grant Nos.11201216,11401293,11461046 and 11661056)the National Basic Research Program of China(Grant No.2013CB329404)the NSF of Jiangxi Province(Grant Nos.20151BAB211010and 20142BAB211016)
文摘Our work considers the optimization of the sum of a non-smooth convex function and a finite family of composite convex functions, each one of which is composed of a convex function and a bounded linear operator. This type of problem is associated with many interesting challenges encoun- tered in the image restoration and image reconstruction fields. We developed a splitting primal-dual proximity algorithm to solve this problem. Furthermore, we propose a preconditioned method~ of which the iterative parameters are obtained without the need to know some particular operator norm in advance. Theoretical convergence theorems are presented. We then apply the proposed methods to solve a total variation regularization model, in which the L2 data error function is added to the L1 data error function. The main advantageous feature of this model is its capability to combine different loss functions. The numerical results obtained for computed tomography (CT) image recon- struction demonstrated the ability of the proposed algorithm to reconstruct an image with few and sparse projection views while maintaining the image quality.
基金supported by National Natural Science Foundation of China(Grant Nos.61672005 and 11571074)。
文摘Recently, iteratively reweighted methods have attracted much interest in compressed sensing, outperforming their unweighted counterparts in most cases. In these methods, decision variables and weights are optimized alternatingly, or decision variables are optimized under heuristically chosen weights. In this paper,we present a novel weighted l1-norm minimization problem for the sparsest solution of underdetermined linear equations. We propose an iteratively weighted thresholding method for this problem, wherein decision variables and weights are optimized simultaneously. Furthermore, we prove that the iteration process will converge eventually. Using the homotopy technique, we enhance the performance of the iteratively weighted thresholding method. Finally, extensive computational experiments show that our method performs better in terms of both running time and recovery accuracy compared with some state-of-the-art methods.
基金Research supported by the National Natural Science Foundation of China under Grant 61672005
文摘Based on the range space property (RSP), the equivalent conditions between nonnegative solutions to the partial sparse and the corresponding weighted l1-norm minimization problem are studied in this paper. Different from other conditions based on the spark property, the mutual coherence, the null space property (NSP) and the restricted isometry property (RIP), the RSP- based conditions are easier to be verified. Moreover, the proposed conditions guarantee not only the strong equivalence, but also the equivalence between the two problems. First, according to the foundation of the strict complemenrarity theorem of linear programming, a sufficient and necessary condition, satisfying the RSP of the sensing matrix and the full column rank property of the corresponding sub-matrix, is presented for the unique nonnegative solution to the weighted l1-norm minimization problem. Then, based on this condition, the equivalence conditions between the two problems are proposed. Finally, this paper shows that the matrix with the RSP of order k can guarantee the strong equivalence of the two problems.