Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a...Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.展开更多
In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocol...In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.展开更多
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq...To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in...In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.展开更多
Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand...Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.展开更多
The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundation...The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.展开更多
Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference betwee...Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.展开更多
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa...The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).展开更多
When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada...When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.展开更多
Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused posit...Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.展开更多
Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we ...Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.展开更多
Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently...Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto*tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.展开更多
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is...Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 202...The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 2023-2024.This report indicates that the development of the world’s energy production is rapidly moving towards the critical point where the proportion of electricity generated from renewable sources surpasses that from non-renewable sources.展开更多
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl...This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.展开更多
We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population...We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.展开更多
To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second...To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.展开更多
基金supported by the National Key R&D Program of China(2022ZD0119604)the National Natural Science Foundation of China(NSFC),(62222308,62173181,62221004)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20220139)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)。
文摘Dear Editor,This letter explores optimal formation control for a network of unmanned surface vessels(USVs).By designing an individual objective function for each USV,the optimal formation problem is transformed into a noncooperative game.Under this game theoretic framework,the optimal formation is achieved by seeking the Nash equilibrium of the regularized game.A modular structure consisting of a distributed Nash equilibrium seeker and a regulator is proposed.
文摘In the realm of the synthesis of heat-integrated distillation configurations,the conventional approach for exploring more heat integration possibilities typically entails the splitting of a single column into a twocolumn configuration.However,this approach frequently necessitates tedious enumeration procedures,resulting in a considerable computational burden.To surmount this formidable challenge,the present study introduces an innovative remedy:The proposition of a superstructure that encompasses both single-column and multiple two-column configurations.Additionally,a simultaneous optimization algorithm is applied to optimize both the process parameters and heat integration structures of the twocolumn configurations.The effectiveness of this approach is demonstrated through a case study focusing on industrial organosilicon separation.The results underscore that the superstructure methodology not only substantially mitigates computational time compared to exhaustive enumeration but also furnishes solutions that exhibit comparable performance.
基金supported by the the National Science and Technology Council(Grant Number:NSTC 112-2221-E239-022).
文摘To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11).
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander,Colombia,project 3704.
文摘In this paper we study a bilinear optimal control problem for a diffusive Lotka-Volterra competition model with chemo-repulsion in a bounded domain of ℝ^(ℕ),N=2,3.This model describes the competition of two species in which one of them avoid encounters with rivals through a chemo-repulsion mechanism.We prove the existence and uniqueness of weak-strong solutions,and then we analyze the existence of a global optimal solution for a related bilinear optimal control problem,where the control is acting on the chemical signal.Posteriorly,we derive first-order optimality conditions for local optimal solutions using the Lagrange multipliers theory.Finally,we propose a discrete approximation scheme of the optimality system based on the gradient method,which is validated with some computational experiments.
基金the VNUHCM-University of Information Technology’s Scientific Research Support Fund.
文摘Localization or positioning scheme in Wireless sensor networks (WSNs) is one of the most challenging andfundamental operations in various monitoring or tracking applications because the network deploys a large areaand allocates the acquired location information to unknown devices. The metaheuristic approach is one of themost advantageous ways to deal with this challenging issue and overcome the disadvantages of the traditionalmethods that often suffer from computational time problems and small network deployment scale. This studyproposes an enhanced whale optimization algorithm that is an advanced metaheuristic algorithm based on thesiege mechanism (SWOA) for node localization inWSN. The objective function is modeled while communicatingon localized nodes, considering variables like delay, path loss, energy, and received signal strength. The localizationapproach also assigns the discovered location data to unidentified devices with the modeled objective functionby applying the SWOA algorithm. The experimental analysis is carried out to demonstrate the efficiency of thedesigned localization scheme in terms of various metrics, e.g., localization errors rate, converges rate, and executedtime. Compared experimental-result shows that theSWOA offers the applicability of the developed model forWSNto perform the localization scheme with excellent quality. Significantly, the error and convergence values achievedby the SWOA are less location error, faster in convergence and executed time than the others compared to at least areduced 1.5% to 4.7% error rate, and quicker by at least 4%and 2% in convergence and executed time, respectivelyfor the experimental scenarios.
基金National Natural Science Foundation of China under Grant Nos.52078395 and 52178301the Open Projects Foundation of the State Key Laboratory for Health and Safety of Bridge Structures under Grant No.BHSKL19-07-GF+1 种基金the Dawn Program of Knowledge Innovation Project from the Bureau of Science and Technology of Wuhan Municipality under Grant No.2022010801020357the Science Research Foundation of Wuhan Institute of Technology under Grant No.K2021030。
文摘The seismic performance of rubber concrete-layered periodic foundations are significantly influenced by their design,in which the band gaps play a paramount role.Aiming at providing better designs for these foundations,this study first proposes and validates the analytical formulas to approximate the bounds of the first few band gaps.In addition,the mapping relations linking the frequencies of different band gaps are presented.Furthermore,an optimal design method for these foundations is developed,which is validated through an engineering example.It is demonstrated that ensuring the superstructure’s resonance zones are completely covered by the corresponding periodic foundation’s band gaps can achieve satisfactory vibration attenuation effects,which is a good strategy for the design of rubber concrete layered periodic foundations.
基金funded by Project Number INML2104 under the Interdisciplinary Center of Smart Mobility and Logistics at King Fahd University of Petroleum and Minerals.This study also was supported by the Special Research Fund BOF23KV17.
文摘Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.
基金supported by National Natural Science Foundation of China under Grants 42192531 and 42192534the Special Fund of Hubei Luojia Laboratory(China)under Grant 220100001the Natural Science Foundation of Hubei Province for Distinguished Young Scholars(China)under Grant 2022CFA090。
文摘The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11).
基金supported by the National Natural Science Foundation of China (62206204,62176193)the Natural Science Foundation of Hubei Province,China (2023AFB705)the Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0932)。
文摘When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
基金supported by the National Key Research and Development Program of China(No.2023YFC3012103 and No.2019YFC1805400)the National Science Foundation of Jiangsu Province,China(No.BK20210524)+1 种基金the National Natural Science Foundation of China(No.42202268 and No.42172272)the Fundamental Research Funds for the Central Universities,China(No.2020ZDPY0201)。
文摘Saline aquifers are the most popular waste and CO_(2)injection and storage reservoirs worldwide.This project proposes that several optimal injection positions should be investigated as hydraulic pressure-focused positions,in order to relieve the high demands of pump performance.The comprehensive indices(F_(i))representing the injectivity of different burial depths were obtained by using information entropy,based on the mercury injection experimental data of 13 rock samples.The results demonstrated that the burial depths of No.4,No.1 and No.2 in the Liujiagou Formation were the most suitable positions for hydraulic focused injection,which means the upper 30 m thickness could be regarded as the hydraulic focused range in the saline aquifer with an average thickness of 400 m.In addition,some laboratory experiments and in situ tests were carried out for the purpose of certifying and analyzing results,including SEM,XRD,brittleness index and logging.The results suggested that the rock samples at the No.4,No.1 and No.2 burial depth ranges have loose microstructure,weak cementation,as well as dual pores and fractures.The lithology is mainly quartz and feldspar,but the clay mineral content is high(10%-25%),which is positive for dissolution.The lithology is suitable for hydraulic fracturing to form extended cracks and micro-fissures during high-TDS(total dissolved solids)mine water injection,because of the high brittleness index.Finally,a theoretical and technical framework for high-TDS mine water injection was established,based on operating pilot engineering.Some theoretical defects and drawbacks learned from the field practices were summarized and solutions proposed.The research in this study could provide guidance and a paradigm for the inexpensive treatment of high-TDS mine water by injection and storage.
基金supported by the National Nat-ural Science Foundation of China(61873215,62103342)the Natural Science Foundation of Sichuan Province(2022NSFSC0470,2022NSFSC0892).
文摘Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.
基金supported by the National Natural Science Foundation of China(Grant No.12174149)。
文摘Metal-free organic emitters,characterized by their thermally activated delayed fluorescence(TADF)properties,offer considerable promise for the creation of highly efficient organic light-emitting diodes(OLEDs).Recently,Shao et al.presented a novel excited state intramolecular proton transfer(ESIPT)system BrA-HBI,demonstrating an emission quantum yield of up to 50%[Adv.Funct.Mater.32,2201256(2022)].However,many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations.For instance,what causes the activation of TADF from the Keto*tautomer and leads to fluorescence quenching in the Enol^(*)form?Herein,we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals.Our findings reveal that ESIPT occurs in the BrA-HBI molecule.Moreover,we have disclosed the reason for the fluorescence quenching of the Enol^(*)form and determined that the T_(2)state plays a dominant role in the TADF phenomenon.In addition,double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI.These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes,but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
基金the National Natural Science Foundation of China(61922063,62273255,62150026)in part by the Shanghai International Science and Technology Cooperation Project(21550760900,22510712000)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities。
文摘Dear Editor,In this letter,the multi-objective optimal control problem of nonlinear discrete-time systems is investigated.A data-driven policy gradient algorithm is proposed in which the action-state value function is used to evaluate the policy.In the policy improvement process,the policy gradient based method is employed.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
文摘The power system,as an energy hub,plays a crucial role in the transformation of energy production and consumption.On July 19,2023,the International Energy Agency(IEA)released a Global Electricity Market Report for 2023-2024.This report indicates that the development of the world’s energy production is rapidly moving towards the critical point where the proportion of electricity generated from renewable sources surpasses that from non-renewable sources.
基金supported by the National Natural Science Foundation of China (62073327,62273350)the Natural Science Foundation of Jiangsu Province (BK20221112)。
文摘This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system.
基金This work was supported by the National Natural Science Foundations of China(Grant Nos.12275033,61973317,and 12274470)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(Grant No.2022JJ10070)+1 种基金the Natural Science Foundation of Hunan Province(Grant No.2022JJ30582)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.20A025).
文摘We present an optimal and robust quantum control method for efficient population transfer in asymmetric double quantum-dot molecules.We derive a long-duration control scheme that allows for highly efficient population transfer by accurately controlling the amplitude of a narrow-bandwidth pulse.To overcome fluctuations in control field parameters,we employ a frequency-domain quantum optimal control theory method to optimize the spectral phase of a single pulse with broad bandwidth while preserving the spectral amplitude.It is shown that this spectral-phase-only optimization approach can successfully identify robust and optimal control fields,leading to efficient population transfer to the target state while concurrently suppressing population transfer to undesired states.The method demonstrates resilience to fluctuations in control field parameters,making it a promising approach for reliable and efficient population transfer in practical applications.
基金National Key R&D Program of China(Grant No.2020YFC1512404).
文摘To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm,special attention was paid to the first and second stage impeller guide vanes.Moreover,the impeller blade outlet width,impeller inlet diameter,blade inclination angle,and number of blades were considered for orthogonal tests.Accordingly,nine groups of design solutions were formed,and then used as a basis for the execution of numerical simulations(CFD)aimed at obtaining the efficiency values and heads for each design solution group.The influence of impeller geometric parameters on the efficiency and head was explored,and the“weight”of each factor was obtained via a range analysis.Optimal structural parameters were finally chosen on the basis of the numerical simulation results,and the performances of the optimized model were verified accordingly(yet by means of CFD).Evidence is provided that the increase in the efficiency and head of the optimized model was 12.11%and 23.5 m,respectively,compared with those of the original model.