With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener...With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.展开更多
A discriminant method for optimizing activity in nuclear medicine studies is validated by comparison with ROC (received operating characteristic)-curves. The method is tested in 21 single photon emission computerize...A discriminant method for optimizing activity in nuclear medicine studies is validated by comparison with ROC (received operating characteristic)-curves. The method is tested in 21 single photon emission computerized tomography (SPECT), performed with a cardiac phantom. Three different lesions (Lb L2 and L3) were placed in the myocardium-wall by pairs fbr each SPECT. Three activities (84, 37 or 18.5 MBq) of 99mTc were used as background. Linear discriminant analysis was used to select the parameters that characterize image quality among the measured variables in the images [(Background-to-Lesion (B/Li) and Signal-to-Noise (S/N) ratios)]. Two clusters with different image quality (P=0.021 ) were obtained. The ratios B/Lj, B/L2 and B/L3 are the parameters used to construct the function with 100% of cases correctly classified into the clusters. The value of 37 MBq was the lowest tested activity for which good results for the B/Li ratios were obtained. The result coincides with the applied ROC-analysis (r=0.89).展开更多
The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide(SF-CO 2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogen...The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide(SF-CO 2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogenic fungi for its potential application as botanical fungicide.The effects of factors,including extraction temperature,extraction pressure,SF-CO 2 flow rate,flower powder size,and time on the essential oil yield were studied using the single factor experiment.An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield.Adopting the optimum conditions,the maximum yield reached 10.01% at 40°C temperature,30 MPa pressure,60 mesh flower powder size,20 L h-1SF-CO 2 flow rate,and 90 min extraction time.The antifungal activities of I.britannica essential oil using the SF-CO 2 against the most important plant pathogenic fungi were also examined through in vitro and in vivo tests.Sixteen plant pathogenic fungi were inhibited to varying degrees at 1 mg mL-1concentration of the essential oil.The mycelial growth of Gaeumannomyces graminis var.tritici was completely inhibited.The radial growths of Phytophthora capsici and Fusarium monilifome were also inhibited by 83.76 and 64.69%,respectively.In addition,the essential oil can inhibit the spore germination of Fusarium oxysporum f.sp.vasinfectum,Phytophthora capsici,Colletotrichum orbiculare,and Pyricularia grisea,and the corresponding inhibition rates were 98.26,96.54,87.89,and 87.35% respectively.The present study has demonstrated that the essential oil of I.britannica flowers extracted through the SF-CO 2 technique is one potential and promising antifungal agent that can be used as botanical fungicide to protect crops.展开更多
The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which ...The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.展开更多
This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface ...This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.展开更多
The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impra...The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impractical.In this study,we present 1D/2D ReS_(2)-CdS hybrid nanorods for photocatalytic hy-drogen evolution,comprised of a ReS_(2)nanosheet layer grown on CdS nanorods.We found that precise control of the contents of the ReS_(2)nanosheet layer allows for manipulating the electronic structure of Re in the ReS_(2)-CdS hybrid nanorods.The ReS_(2)-CdS hybrid nanorods with optimal ReS_(2)nanosheet layer content dramatically improve photocatalytic hydrogen evolution activity.Notably,photocatalytic hydro-gen evolution activity(64.93 mmol g^(−1)h^(−1))of ReS_(2)-CdS hybrid nanorods with ReS_(2)nanosheet layers(Re/Cd atomic ratio of 0.051)is approximately 136 times higher than that of pure CdS nanorods under visible light irradiation.Furthermore,intimated coupling of the ReS_(2)nanosheet layer with CdS nanorods reduced the surface trap-site of the CdS nanorods,resulting in enhanced photocatalytic stability.The de-tailed optical and electrical investigations demonstrate that the optimal ReS_(2)nanosheet layer contents in the ReS_(2)-CdS hybrid nanorods can provide improved charge transfer capability,catalytic activity,and light absorption efficiency.This study sheds light on the development of photocatalysts for highly efficient photocatalytic hydrogen evolution.展开更多
The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. ...The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.展开更多
In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the...In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the regulation equipment,and the current of the shunt capacitor of the cables are not considered.In this paper,a multi-period two-stage robust scheduling strategy that aims to minimize the total cost of the power supply is developed.This strategy considers the time-ofuse price,the capability of the DGs to regulate the active and reactive power,the action costs of the regulation equipment,and the current of the shunt capacitors of the cables in a radial distribution system.Furthermore,the numbers of variables and constraints in the first-stage model remain constant during the iteration to enhance the computation efficiency.To solve the second-stage model,only the model of each period needs to be solved.Then,their objective values are accumulated,revealing that the computation rate using the proposed method is much higher than that of existing methods.The effectiveness of the proposed method is validated by actual 4-bus,IEEE 33-bus,and PG 69-bus distribution systems.展开更多
This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0....This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0.3 wt%,the device achieves an ideal improvement on the shunt resistor and the fill factor.Compared with the reference cell,the power conversion efficiency of the doped cell is improved 24%.The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.展开更多
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic...The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.展开更多
Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to...Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.展开更多
The structure–activity relationship(SAR) study of a 1 2 3 4 4a 9a-hexahydro-1H-xanthene series of selective,human glucocorticoid receptor a(hGRa) antagonists is reported.Compounds were screened using hydroxyapati...The structure–activity relationship(SAR) study of a 1 2 3 4 4a 9a-hexahydro-1H-xanthene series of selective,human glucocorticoid receptor a(hGRa) antagonists is reported.Compounds were screened using hydroxyapatite-based GR binding and MMTV-Luc co-transfection reporter gene assays.Four different regions of the scaffold were modified to assess the effects on hGRa antagonism and related potency.Compound 8d exhibits an 8-fold better bioactivity than the original hit 1a,as well as an improved chemical stability,which make it a promising lead for the subsequent optimization.展开更多
First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time ...First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time scale optimal scheduling of the microgrid based on Model Predictive Control(MPC) is then studied, and the optimized genetic algorithm and the microgrid multi-time rolling optimization strategy are used to optimize the datahead scheduling phase and the intra-day optimization phase. Next, based on the three-tier coordinated scheduling architecture, the operation loss model of the distribution network is solved using the improved branch current forward-generation method and the genetic algorithm. The optimal scheduling of the distribution network layer is then completed. Finally, the simulation examples are used to compare and verify the validity of the method.展开更多
基金supported by State Grid Corporation of China Project“Research and Application of Key Technologies for Active Power Control in Regional Power Grid with High Penetration of Distributed Renewable Generation”(5108-202316044A-1-1-ZN).
文摘With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid.
基金Project supported by the Third World Academy of Sciences (TWAS), Cuba
文摘A discriminant method for optimizing activity in nuclear medicine studies is validated by comparison with ROC (received operating characteristic)-curves. The method is tested in 21 single photon emission computerized tomography (SPECT), performed with a cardiac phantom. Three different lesions (Lb L2 and L3) were placed in the myocardium-wall by pairs fbr each SPECT. Three activities (84, 37 or 18.5 MBq) of 99mTc were used as background. Linear discriminant analysis was used to select the parameters that characterize image quality among the measured variables in the images [(Background-to-Lesion (B/Li) and Signal-to-Noise (S/N) ratios)]. Two clusters with different image quality (P=0.021 ) were obtained. The ratios B/Lj, B/L2 and B/L3 are the parameters used to construct the function with 100% of cases correctly classified into the clusters. The value of 37 MBq was the lowest tested activity for which good results for the B/Li ratios were obtained. The result coincides with the applied ROC-analysis (r=0.89).
基金supported by the Scientific and Technological Key Project of Henan Province, China (082102350006 and 102102310242)the College Young Teachers Projects of Henan Province, China (2010GGJS046)
文摘The aim of this study was to determine the extraction technique of supercritical fluid carbon dioxide(SF-CO 2) for the essential oil from Inula britannica flowers and its antifungal activities against plant pathogenic fungi for its potential application as botanical fungicide.The effects of factors,including extraction temperature,extraction pressure,SF-CO 2 flow rate,flower powder size,and time on the essential oil yield were studied using the single factor experiment.An orthogonal experiment was conducted to determine the best operating conditions for the maximum extraction oil yield.Adopting the optimum conditions,the maximum yield reached 10.01% at 40°C temperature,30 MPa pressure,60 mesh flower powder size,20 L h-1SF-CO 2 flow rate,and 90 min extraction time.The antifungal activities of I.britannica essential oil using the SF-CO 2 against the most important plant pathogenic fungi were also examined through in vitro and in vivo tests.Sixteen plant pathogenic fungi were inhibited to varying degrees at 1 mg mL-1concentration of the essential oil.The mycelial growth of Gaeumannomyces graminis var.tritici was completely inhibited.The radial growths of Phytophthora capsici and Fusarium monilifome were also inhibited by 83.76 and 64.69%,respectively.In addition,the essential oil can inhibit the spore germination of Fusarium oxysporum f.sp.vasinfectum,Phytophthora capsici,Colletotrichum orbiculare,and Pyricularia grisea,and the corresponding inhibition rates were 98.26,96.54,87.89,and 87.35% respectively.The present study has demonstrated that the essential oil of I.britannica flowers extracted through the SF-CO 2 technique is one potential and promising antifungal agent that can be used as botanical fungicide to protect crops.
文摘The nonisothermal effectiveness fcator for reaction with kinetics r=kc^m/(l+Kc)~a can be improved bycatalysts with nonuniform activity distribution.The optimal distribution function in one-dimensional modelwith which the effectiveness factor can be maximized is a δ-function which means that the activity of thecatalyst should be concentrated on a layer with negligible thickness in a precise locationfrom the centerof pellets.The general equations for predicting the value ofand maximum effectiveness factor as a functionof thermodynamic,kinetic and transport parameters are derived and they can be given explicitly in the case ofa=O,m=a or isothermal reaction.An active layer with definite thickness and a deviation from the optimal locationboth decrease thevalue of the effectiveness factor.It has been shown numerically that the effectiveness factor decreases slightlywith an active layer at the inner side of x but seriously at outer side.
基金Funded by the Faculty of Chemical&Natural Resources Engineering,Universiti Malaysia Pahang through a Local Research Grant Scheme
文摘This study presents the use of chicken eggshells waste utilizing palm kernel shell based activated carbon(PKSAC) through the modification of their surface to enhance the adsorption capacity of H2S. Response surface methodology technique was used to optimize the process conditions and they were found to be: 500 mg/L for H2S initial concentration, 540 min for contact time and 1 g for adsorbent mass. The impacts of three arrangement factors(calcination temperature of impregnated activated carbon(IAC), the calcium solution concentration and contact time of calcination) on the H2S removal efficiency and impregnated AC yield were investigated. Both responses IAC yield(IACY, %) and removal efficiency(RE, %) were maximized to optimize the IAC preparation conditions. The optimum preparation conditions for IACY and RE were found as follows: calcination temperature of IAC of 880 ℃, calcium solution concentration of 49.3% and calcination contact time of 57.6 min, which resulted in 35.8% of IACY and 98.2% RE. In addition, the equilibrium and kinetics of the process were investigated. The adsorbent was characterized using TGA, XRD, FTIR, SEM/EDX, and BET. The maximum monolayer adsorption capacity was found to be 543.47 mg/g. The results recommended that the composite of PKSAC and Ca O could be a useful material for H2S containing wastewater treatment.
基金supported by the National Re-search Foundation of Korea(Nos.NRF-2020R1C1C1008514,2019R1A6A1A11053838,and NRF-2023R1A2C1004015)the“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(No.2021RIS-003).
文摘The visible-light-driven hydrogen evolution is extremely important,but the poor charge transfer capa-bility,a sluggish evolution rate of hydrogen,and severe photo-corrosion make photocatalytic hydrogen evolution impractical.In this study,we present 1D/2D ReS_(2)-CdS hybrid nanorods for photocatalytic hy-drogen evolution,comprised of a ReS_(2)nanosheet layer grown on CdS nanorods.We found that precise control of the contents of the ReS_(2)nanosheet layer allows for manipulating the electronic structure of Re in the ReS_(2)-CdS hybrid nanorods.The ReS_(2)-CdS hybrid nanorods with optimal ReS_(2)nanosheet layer content dramatically improve photocatalytic hydrogen evolution activity.Notably,photocatalytic hydro-gen evolution activity(64.93 mmol g^(−1)h^(−1))of ReS_(2)-CdS hybrid nanorods with ReS_(2)nanosheet layers(Re/Cd atomic ratio of 0.051)is approximately 136 times higher than that of pure CdS nanorods under visible light irradiation.Furthermore,intimated coupling of the ReS_(2)nanosheet layer with CdS nanorods reduced the surface trap-site of the CdS nanorods,resulting in enhanced photocatalytic stability.The de-tailed optical and electrical investigations demonstrate that the optimal ReS_(2)nanosheet layer contents in the ReS_(2)-CdS hybrid nanorods can provide improved charge transfer capability,catalytic activity,and light absorption efficiency.This study sheds light on the development of photocatalysts for highly efficient photocatalytic hydrogen evolution.
文摘The control problem of trajectory based path following for passenger vehicles is studied. Comprehensive nonlinear vehicle model is utilized for simulation vehicle response during various maneuvers in MATLAB/Simulink. In order to follow desired path, a driver model is developed to enhance closed loop driver/vehicle model. Then, linear quadratic regulator(LQR) controller is developed which regulates direct yaw moment and corrective steering angle on wheels. Particle swam optimization(PSO) method is utilized to optimize the LQR controller for various dynamic conditions. Simulation results indicate that, over various maneuvers, side slip angle and lateral acceleration can be reduced by 10% and 15%, respectively, which sustain the vehicle stable. Also, anti-lock brake system is designed for longitudinal dynamics of vehicle to achieve desired slip during braking and accelerating. Proposed comprehensive controller demonstrates that vehicle steerability can increase by about 15% during severe braking by preventing wheel from locking and reducing stopping distance.
基金supported in part by the Fundamental Research Funds for the Central Universities of China(No.PA2021GDSK0083)in part by the State Key Program of National Natural Science of China(No.51637004)in part by the National Key Research and Development Plan“Important Scientific Instruments and Equipment Development”(No.2016YFF0102200)。
文摘In the existing multi-period robust optimization methods for the optimal power flow in radial distribution systems,the capability of distributed generators(DGs)to regulate the reactive power,the operation costs of the regulation equipment,and the current of the shunt capacitor of the cables are not considered.In this paper,a multi-period two-stage robust scheduling strategy that aims to minimize the total cost of the power supply is developed.This strategy considers the time-ofuse price,the capability of the DGs to regulate the active and reactive power,the action costs of the regulation equipment,and the current of the shunt capacitors of the cables in a radial distribution system.Furthermore,the numbers of variables and constraints in the first-stage model remain constant during the iteration to enhance the computation efficiency.To solve the second-stage model,only the model of each period needs to be solved.Then,their objective values are accumulated,revealing that the computation rate using the proposed method is much higher than that of existing methods.The effectiveness of the proposed method is validated by actual 4-bus,IEEE 33-bus,and PG 69-bus distribution systems.
基金Project supported by the National Natural Science Foundation of China(Grant No.61540016)
文摘This paper reports the doping effect of cholesteric liquid crystal 3β-Hydroxy-5-cholestene 3-oleate on polymer solar cells composed of the poly 3-hexyl thiophene and the fullerene derivative.With a doping ratio of 0.3 wt%,the device achieves an ideal improvement on the shunt resistor and the fill factor.Compared with the reference cell,the power conversion efficiency of the doped cell is improved 24%.The photoelectric measurement and the active layer characterization indicate that the self-assembly liquid crystal can improve the film crystallization and reduce the membrane defect.
文摘The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.
基金the National Natural Science Foundation of China(51078234)Shenzhen R&D fund(JCYJ20140418193546101)Shenzhen University R&D fund(T201203)
文摘Alkaline pretreatment is an effective technology to disintegrate sewage sludge, where alkali dosage and sludge concentration are two important factors. p H value or alkali concentration is usually adjusted in order to determine a proper dosage of alkali. Our work has found that this is not a good strategy. A new parameter, the ratio of alkali to sludge(Ra/s), is more sensitive in controlling the alkali dosage. The sludge concentration Csand retention time t are two other important factors to consider. The validity of these arguments is confirmed with modeling and experiments. The individual effect of Ra/s, Csand t was studied separately. Then the combined effect of these three factors was evaluated. The sludge disintegration degree of 44.7% was achieved with the optimized factors. Furthermore, an alkaline-microwave combined pretreatment process was carried out under these optimized conditions. A high disintegration degree of 62.3% was achieved while the energy consumption of microwave was much lower than previously reported.
基金supported in part by grants from the Ministry of Health of China (Nos. 2012ZX09304-011, 2013ZX09401003-005, 2013ZX09507001 and 2013ZX09507002)Shanghai Science and Technology Development Fund (No. 13DZ2290300)Thousand Talents Program in China
文摘The structure–activity relationship(SAR) study of a 1 2 3 4 4a 9a-hexahydro-1H-xanthene series of selective,human glucocorticoid receptor a(hGRa) antagonists is reported.Compounds were screened using hydroxyapatite-based GR binding and MMTV-Luc co-transfection reporter gene assays.Four different regions of the scaffold were modified to assess the effects on hGRa antagonism and related potency.Compound 8d exhibits an 8-fold better bioactivity than the original hit 1a,as well as an improved chemical stability,which make it a promising lead for the subsequent optimization.
基金supported by Beijing Municipal Science Technology commission research(No.Z171100000317003)
文摘First, a three-tier coordinated scheduling system consisting of a distribution network dispatch layer, a microgrid centralized control layer, and local control layer in the energy internet is proposed. The multi-time scale optimal scheduling of the microgrid based on Model Predictive Control(MPC) is then studied, and the optimized genetic algorithm and the microgrid multi-time rolling optimization strategy are used to optimize the datahead scheduling phase and the intra-day optimization phase. Next, based on the three-tier coordinated scheduling architecture, the operation loss model of the distribution network is solved using the improved branch current forward-generation method and the genetic algorithm. The optimal scheduling of the distribution network layer is then completed. Finally, the simulation examples are used to compare and verify the validity of the method.