期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of coil and chamber structure on plasma radial uniformity in radio frequency inductively coupled plasma
1
作者 赵洋 周晓华 +2 位作者 高升荣 宋莎莎 赵玉真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期58-66,共9页
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m... Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity. 展开更多
关键词 inductively coupled plasma fluid simulation optimized coil chamber aspect ratio plasma uniformity
下载PDF
Efficiency analysis and optimization of wireless power transfer system for freely moving biomedical implants 被引量:1
2
作者 SHAO Qi LIU Hao FANG XueLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第1期91-101,共11页
In the wireless power transfer system for freely moving biomedical implants,the receiving unit was generally inefficient for the reason that its design parameters including the receiving coil's dimension and recei... In the wireless power transfer system for freely moving biomedical implants,the receiving unit was generally inefficient for the reason that its design parameters including the receiving coil's dimension and receiving circuits' topology were always determined by experiments.In order to build the relationship between these parameters and the total transfer efficiency,this paper developed a novel efficiency model based on the impedance model of the coil and the circuit model of the receiving circuits.According to the design constraints,the optimal design parameters in the worst case were derived.The results indicate that the combination of the two-layered receiving coil and half-bridge rectifier has more advantages in size,efficiency and safety,which is preferred in the receiving unit.Additionally,when the load resistance increases,the optimal turn number of the receiving coil basically keeps constant and the corresponding transmitting current and total efficiency decrease.For 100 Ω load,the transmitting current and total efficiency in the worst case were measured to be 5.30 A and 1.45% respectively,which are much better than the published results.In general,our work provides an efficient method to determine the design parameters of the wireless power transfer system for freely moving biomedical implants. 展开更多
关键词 wireless power transfer system capsule endoscope freely moving biomedical implants receiving coil coil optimization EFFICIENCY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部