Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference betwee...Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.展开更多
The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio...The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.展开更多
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ...Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which ...Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.展开更多
To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling techno...To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.展开更多
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i...Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.展开更多
This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the con...This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.展开更多
Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the ne...Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M...By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.展开更多
As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption...Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model ...BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.展开更多
There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipmen...There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.展开更多
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on d...Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.展开更多
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In...This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.展开更多
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r...BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.展开更多
基金funded by Project Number INML2104 under the Interdisciplinary Center of Smart Mobility and Logistics at King Fahd University of Petroleum and Minerals.This study also was supported by the Special Research Fund BOF23KV17.
文摘Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.
基金Funded by the National Natural Science Foundation of China(No.51908183)the Natural Science Foundation of Hebei Province(No.E2023202101)。
文摘The prediction model for mechanical properties of RAC was established through the Bayesian optimization-based Gaussian process regression(BO-GPR)method,where the input variables in BO-GPR model depend on the mix ratio of concrete.Then the compressive strength prediction model,the material cost,and environmental factors were simultaneously considered as objectives,while a multi-objective gray wolf optimization algorithm was developed for finding the optimal mix ratio.A total of 730 RAC datasets were used for training and testing the predication model,while the optimal design method for mix ratio was verified through RAC experiments.The experimental results show that the predicted,testing,and expected compressive strengths are nearly consistent,illustrating the effectiveness of the proposed method.
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFB3707803)the National Natural Science Foundation of China(Grant Nos.12072179 and 11672168)+1 种基金the Key Research Project of Zhejiang Lab(Grant No.2021PE0AC02)Shanghai Engineering Research Center for Inte-grated Circuits and Advanced Display Materials.
文摘Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘Spatial optimization as part of spatial modeling has been facilitated significantly by integration with GIS techniques. However, for certain research topics, applying standard GIS techniques may create problems which require attention. This paper serves as a cautionary note to demonstrate two problems associated with applying GIS in spatial optimization, using a capacitated p-median facility location optimization problem as an example. The first problem involves errors in interpolating spatial variations of travel costs from using kriging, a common set of techniques for raster files. The second problem is inaccuracy in routing performed on a graph directly created from polyline shapefiles, a common vector file type. While revealing these problems, the paper also suggests remedies. Specifically, interpolation errors can be eliminated by using agent-based spatial modeling while the inaccuracy in routing can be improved through altering the graph topology by splitting the long edges of the shapefile. These issues suggest the need for caution in applying GIS in spatial optimization study.
基金supported by the National Natural Science Foundation of China(Grants 52304001,52227804)State Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum,Beijing(No.PRE/open-2310)。
文摘To address the two critical issues of evaluating the necessity of implementing cooling techniques and achieving real-time temperature control of drilling fluids underground in the current drilling fluid cooling technology,we first established a temperature and pressure coupled downhole heat transfer model,which can be used in both water-based and oil-based drilling fluid.Then,fourteen factors,which could affect wellbore temperature,were analyzed.Based on the standard deviation of the downhole temperature corresponding to each influencing factor,the influence of each factor was quantified.The influencing factors that can be used to guide the drilling fluid's cooling technology were drilling fluid thermal conductivity,drilling fluid heat capacity,drilling fluid density,drill strings rotation speed,pump rate,viscosity,ROP,and injection temperature.The nondominated sorting genetic algorithm was used to optimize these six parameters,but the optimization process took 182 min.Combining these eight parameters'influence rules with the nondominated sorting genetic algorithm can reduce the optimization time to 108 s.Theoretically,the downhole temperature has been demonstrated to increase with the inlet temperature increasing linearly under quasi-steady states.Combining this law and PID,the downhole temperature can be controlled,which can reduce the energy for cooling the surface drilling fluid and can ensure the downhole temperature reaches the set value as soon as possible.
基金funded by the Natural Science Foundation of Shandong Province (ZR2021MD061ZR2023QD025)+3 种基金China Postdoctoral Science Foundation (2022M721972)National Natural Science Foundation of China (41174098)Young Talents Foundation of Inner Mongolia University (10000-23112101/055)Qingdao Postdoctoral Science Foundation (QDBSH20230102094)。
文摘Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs.
基金supported by the Tunisian Ministry of Higher Education and Scientific Research under Grant LSE-ENIT-LR 11ES15funded in part by the PAQ-Collabora(PAR&I-Tk)program。
文摘This paper presents a peer-to-peer community cost optimization approach based on a single-prosumer energy management system.Its objective is to optimize energy costs for prosumers in the community by enhancing the consumption efficiency.This study was conducted along two main axes.The first axis focuses on designing a digital twin for a residential community microgrid platform.This phase involves data collection,cleaning,exploration,and interpretation.Moreover,it includes replicating the functionality of the real platform and validating the results.The second axis involves the development of a novel approach that incorporates two distinct prosumer behaviors within the same community microgrid,while maintaining the concept of peer-to-peer energy trading.Prosumers without storage utilize their individual PV systems to fulfill their energy requirements and inject excess energy into a local microgrid.Meanwhile,a single prosumer with a storage system actively engages in energy exchange to maximize the community’s profit.This is achieved by optimizing battery usage using a cost optimization solution.The proposed solution is validated using the developed digital twin.
文摘Analyzing big data, especially medical data, helps to provide good health care to patients and face the risks of death. The COVID-19 pandemic has had a significant impact on public health worldwide, emphasizing the need for effective risk prediction models. Machine learning (ML) techniques have shown promise in analyzing complex data patterns and predicting disease outcomes. The accuracy of these techniques is greatly affected by changing their parameters. Hyperparameter optimization plays a crucial role in improving model performance. In this work, the Particle Swarm Optimization (PSO) algorithm was used to effectively search the hyperparameter space and improve the predictive power of the machine learning models by identifying the optimal hyperparameters that can provide the highest accuracy. A dataset with a variety of clinical and epidemiological characteristics linked to COVID-19 cases was used in this study. Various machine learning models, including Random Forests, Decision Trees, Support Vector Machines, and Neural Networks, were utilized to capture the complex relationships present in the data. To evaluate the predictive performance of the models, the accuracy metric was employed. The experimental findings showed that the suggested method of estimating COVID-19 risk is effective. When compared to baseline models, the optimized machine learning models performed better and produced better results.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金supported by the National Natural Science Foundation of China(Grant No.12272144).
文摘By analyzing the results of compliance minimization of thermoelastic structures,we observed that microstructures play an important role in this optimization problem.Then,we propose to use a multiple variable cutting(M-VCUT)level set-based model of microstructures to solve the concurrent two-scale topology optimization of thermoelastic structures.A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes,thus giving more diversity of microstructure and more flexibility in design optimization.The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method,and then a mapping relationship between the design variables and the effective properties is established,which gives a data-driven model of microstructure.In the online phase,the data-driven model is used in the finite element analysis to improve the computational efficiency.The compliance minimization problem is considered,and the results of numerical examples prove that the proposed method is effective.
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
文摘Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金Supported by the Key Research&Development Program of Shaanxi Province of China,No.2024SF-YBXM-447Institutional Foundation of The First Affiliated Hospital of Xi’an Jiaotong University,No.2022MS-07+1 种基金Fundamental Research Funds for the Central Universities,No.xzy022023068Natural Science Foundation of Shaanxi Province,No.2023-JC-QN-0814.
文摘BACKGROUND The magnetic compression technique has been used to establish an animal model of tracheoesophageal fistula(TEF),but the commonly shaped magnets present limitations of poor homogeneity of TEF and poor model control.We designed a Tshaped magnet system to overcome these problems and verified its effectiveness via animal experiments.AIM To investigate the effectiveness of a T-shaped magnet system for establishing a TEF model in beagle dogs.METHODS Twelve beagles were randomly assigned to groups in which magnets of the Tshaped scheme(study group,n=6)or normal magnets(control group,n=6)were implanted into the trachea and esophagus separately under gastroscopy.Operation time,operation success rate,and accidental injury were recorded.After operation,the presence and timing of cough and the time of magnet shedding were observed.Dogs in the control group were euthanized after X-ray and gastroscopy to confirm establishment of TEFs after coughing,and gross specimens of TEFs were obtained.Dogs in the study group were euthanized after X-ray and gastroscopy 2 wk after surgery,and gross specimens were obtained.Fistula size was measured in all animals,and then harvested fistula specimens were examined by hematoxylin and eosin(HE)and Masson trichrome staining.RESULTS The operation success rate was 100%for both groups.Operation time did not differ between the study group(5.25 min±1.29 min)and the control group(4.75 min±1.70 min;P=0.331).No bleeding,perforation,or unplanned magnet attraction occurred in any animal during the operation.In the early postoperative period,all dogs ate freely and were generally in good condition.Dogs in the control group had severe cough after drinking water at 6-9 d after surgery.X-ray indicated that the magnets had entered the stomach,and gastroscopy showed TEF formation.Gross specimens of TEFs from the control group showed the formation of fistulas with a diameter of 4.94 mm±1.29 mm(range,3.52-6.56 mm).HE and Masson trichrome staining showed scar tissue formation and hierarchical structural disorder at the fistulas.Dogs in the study group did not exhibit obvious coughing after surgery.X-ray examination 2 wk after surgery indicated fixed magnet positioning,and gastroscopy showed no change in magnet positioning.The magnets were removed using a snare under endoscopy,and TEF was observed.Gross specimens showed well-formed fistulas with a diameter of 6.11 mm±0.16 mm(range,5.92-6.36 mm),which exceeded that in the control group(P<0.001).Scar formation was observed on the internal surface of fistulas by HE and Masson trichrome staining,and the structure was more regular than that in the control group.CONCLUSION Use of the modified T-shaped magnet scheme is safe and feasible for establishing TEF and can achieve a more stable and uniform fistula size compared with ordinary magnets.Most importantly,this model offers better controllability,which improves the flexibility of follow-up studies.
文摘There are several advantages to the MIG(Metal Inert Gas)process,which explains its increased use in variouswelding sectors,such as automotive,marine,and construction.A variant of the MIG process,where the sameequipment is employed except for the deposition of a thin layer of flux before the welding operation,is the AMIG(Activated Metal Inert Gas)technique.This study focuses on investigating the impact of physical properties ofindividual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can helpdetermine a relationship among weld depth penetration,the aspect ratio,and the input physical properties ofthe oxides.Five types of oxides,TiO_(2),SiO_(2),Fe_(2)O_(3),Cr_(2)O_(3),and Mn_(2)O_(3),are tested on butt joint design withoutpreparation of the edges.A robust algorithm based on the particle swarm optimization(PSO)technique is appliedto optimally tune the models’parameters,such as the quadratic error between the actual outputs(depth and aspectratio),and the error estimated by the models’outputs is minimized.The results showed that the proposed PSOmodel is first and foremost robust against uncertainties in measurement devices and modeling errors,and second,that it is capable of accurately representing and quantifying the weld depth penetration and the weld aspect ratioto the oxides’thermal properties.
文摘Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting their energy utilization and optimizing costs. Motivated by this,this paper presents an Intelligent Energy Utilization Analysis using Smart Metering Data(IUA-SMD)model to determine energy consumption patterns. The proposed IUA-SMD model comprises three major processes:data Pre-processing,feature extraction,and classification,with parameter optimization. We employ the extreme learning machine(ELM)based classification approach within the IUA-SMD model to derive optimal energy utilization labels. Additionally,we apply the shell game optimization(SGO)algorithm to enhance the classification efficiency of the ELM by optimizing its parameters. The effectiveness of the IUA-SMD model is evaluated using an extensive dataset of smart metering data,and the results are analyzed in terms of accuracy and mean square error(MSE). The proposed model demonstrates superior performance,achieving a maximum accuracy of65.917% and a minimum MSE of0.096. These results highlight the potential of the IUA-SMD model for enabling efficient energy utilization through intelligent analysis of smart metering data.
基金financed by the National Key Research and Development Program of China,High efficiency space satellite charging system based on microwave wireless energy transfer technology(Grant No.2021YFB3900304)。
文摘This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount.
文摘BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.