The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a ...To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.展开更多
Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations...Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the...Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based ...This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.展开更多
Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system e...Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.展开更多
With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of th...With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the ...In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.展开更多
The performances of a hybrid energy system for decentralized heating are investigated.The proposed energy system consists of a solar collector,an air-source heat pump,a gas-fired boiler and a hot water tank.A mathemat...The performances of a hybrid energy system for decentralized heating are investigated.The proposed energy system consists of a solar collector,an air-source heat pump,a gas-fired boiler and a hot water tank.A mathematical model is developed to predict the operating characteristics of the system.The simulation results are compared with experimental data.Such a comparison indicates that the model accuracy is sufficient.The influence of the flat plate solar collector area on the economic and energy efficiency of such system is also evaluated through numerical simulations.Finally,this system is optimized using the method of orthogonal design.The results clearly demonstrate that the solar-heat pump-gas combined system is more convenient and efficient than the simple gas system and the heat pump-gas combined system,whereas it is less convenient but more efficient than the solarassisted gas system.展开更多
The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. ...The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. For the given cycle case, genetic algorithm is adopted to solve the multi-constraint combinatorial optimization problem. Simulation result showed the algorithm's feasibility. As far as the realtime operation is concerned, based on the original fuzzy control strategy, the fuel cell voltage and voltage variance parameters are introduced to apply result reveals that the improved fuzzy control strategy can enhance the two-level modification on the fuzzy control output. The fuel cell efficiency and reduce the power fluctuations.展开更多
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba...In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.展开更多
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit...Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.展开更多
An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.Howe...An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.展开更多
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.展开更多
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys...In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.展开更多
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric...Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.展开更多
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
文摘To address the scheduling problem involving energy storage systems and uncertain energy,we propose a method based on multi-stage robust optimization.This approach aims to regulate the energy storage system by using a multi-stage robust optimal control method,which helps overcome the limitations of traditional methods in terms of time scale.The goal is to effectively utilize the energy storage power station system to address issues caused by unpredictable variations in environmental energy and fluctuating load throughout the day.To achieve this,a mathematical model is constructed to represent uncertain energy sources such as photovoltaic and wind power.The generalized Benders Decomposition method is then employed to solve the multi-stage objective optimization problem.By decomposing the problem into a series of sub-objectives,the system scale is effectively reduced,and the algorithm’s convergence ability is improved.Compared with other algorithms,the multi-stage robust optimization model has better economy and convergence ability and can be used to guide the power dispatching of uncertain energy and energy storage systems.
基金supported by National Natural Science Foundation of China(U2066209)。
文摘Energy storage systems(ESSs)operate as independent market participants and collaborate with photovoltaic(PV)generation units to enhance the flexible power supply capabilities of PV units.However,the dynamic variations in the profitability of ESSs in the electricity market are yet to be fully understood.This study introduces a dual-timescale dynamics model that integrates a spot market clearing(SMC)model into a system dynamics(SD)model to investigate the profit-aware capacity growth of ESSs and compares the profitability of independent energy storage systems(IESSs)with that of an ESS integrated within a PV(PV-ESS).Furthermore,this study aims to ascertain the optimal allocation of the PV-ESS.First,SD and SMC models were set up.Second,the SMC model simulated on an hourly timescale was incorporated into the SD model as a subsystem,a dual-timescale model was constructed.Finally,a development simulation and profitability analysis was conducted from 2022 to 2040 to reveal the dynamic optimal range of PV-ESS allocation.Additionally,negative electricity prices were considered during clearing processes.The simulation results revealed differences in profitability and capacity growth between IESS and PV-ESS,helping grid investors and policymakers to determine the boundaries of ESSs and dynamic optimal allocation of PV-ESSs.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
基金support by Ministry of Housing and Urban-Rural Development’s Science and Technology Plan Project 2022(Hubei Province).
文摘Building structures themselves are one of the key areas of urban energy consumption,therefore,are a major source of greenhouse gas emissions.With this understood,the carbon trading market is gradually expanding to the building sector to control greenhouse gas emissions.Hence,to balance the interests of the environment and the building users,this paper proposes an optimal operation scheme for the photovoltaic,energy storage system,and flexible building power system(PEFB),considering the combined benefit of building.Based on the model of conventional photovoltaic(PV)and energy storage system(ESS),the mathematical optimization model of the system is proposed by taking the combined benefit of the building to the economy,society,and environment as the optimization objective,taking the near-zero energy consumption and carbon emission limitation of the building as the main constraints.The optimized operation strategy in this paper can give optimal results by making a trade-off between the users’costs and the combined benefits of the building.The efficiency and effectiveness of the proposed methods are verified by simulated experiments.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金supported by the National Natural Science Foundation of China(Grant No.61971117)the Natural Science Foundation of Hebei Province(Grant No.F2020501007)the S&T Program of Hebei(No.22377717D)。
文摘This paper considers a high energy efficiency dynamic connected(HEDC)structure,which promotes the practicability and reduces the power consumption of hybrid precoding system by lowresolution phase shifters(PSs).Based on the proposed structure,a new hybrid precoding algorithm is presented to optimize the energy efficiency,namely,HP-HEDC algorithm.Firstly,via a new defined effective optimal precoding matrix,the problem of optimizing the analog switch precoding matrix is formulated as a sparse representation problem.Thus,the optimal analog switch precoding matrix can be readily obtained by the branch-and-bound method.Then,the digital precoding matrix optimization problem is modeled as a dictionary update problem and solved by the method of optimal direction(MOD).Finally,the diagonal entries of the analog PS precoding matrix are optimized by exhaustive search independently since PS and antenna is one-to-one.Simulation results show that the HEDC structure enjoys low power consumption and satisfactory spectral efficiency.The proposed algorithm presents at least 50%energy efficiency improvement compared with other algorithms when the PS resolution is set as 3-bit.
文摘Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.
基金supported by the Key Technology Projects of the China Southern Power Grid Corporation(STKJXM20200059)the Key Support Project of the Joint Fund of the National Natural Science Foundation of China(U22B20123)。
文摘With the development of green data centers,a large number of Uninterruptible Power Supply(UPS)resources in Internet Data Center(IDC)are becoming idle assets owing to their low utilization rate.The revitalization of these idle UPS resources is an urgent problem that must be addressed.Based on the energy storage type of the UPS(EUPS)and using renewable sources,a solution for IDCs is proposed in this study.Subsequently,an EUPS cluster classification method based on the concept of shared mechanism niche(CSMN)was proposed to effectively solve the EUPS control problem.Accordingly,the classified EUPS aggregation unit was used to determine the optimal operation of the IDC.An IDC cost minimization optimization model was established,and the Quantum Particle Swarm Optimization(QPSO)algorithm was adopted.Finally,the economy and effectiveness of the three-tier optimization framework and model were verified through three case studies.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328.
文摘In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.
文摘The performances of a hybrid energy system for decentralized heating are investigated.The proposed energy system consists of a solar collector,an air-source heat pump,a gas-fired boiler and a hot water tank.A mathematical model is developed to predict the operating characteristics of the system.The simulation results are compared with experimental data.Such a comparison indicates that the model accuracy is sufficient.The influence of the flat plate solar collector area on the economic and energy efficiency of such system is also evaluated through numerical simulations.Finally,this system is optimized using the method of orthogonal design.The results clearly demonstrate that the solar-heat pump-gas combined system is more convenient and efficient than the simple gas system and the heat pump-gas combined system,whereas it is less convenient but more efficient than the solarassisted gas system.
基金Project (No. 2003AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. For the given cycle case, genetic algorithm is adopted to solve the multi-constraint combinatorial optimization problem. Simulation result showed the algorithm's feasibility. As far as the realtime operation is concerned, based on the original fuzzy control strategy, the fuel cell voltage and voltage variance parameters are introduced to apply result reveals that the improved fuzzy control strategy can enhance the two-level modification on the fuzzy control output. The fuel cell efficiency and reduce the power fluctuations.
文摘In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.
文摘Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.
基金This research was funded by the Deputyship for Research and Innovation,Ministry of Education,Saudi Arabia,through the University of Tabuk,Grant Number S-1443-0123.
文摘An autonomous microgrid that runs on renewable energy sources is presented in this article.It has a supercon-ducting magnetic energy storage(SMES)device,wind energy-producing devices,and an energy storage battery.However,because such microgrids are nonlinear and the energy they create varies with time,controlling and managing the energy inside them is a difficult issue.Fractional-order proportional integral(FOPI)controller is recommended for the current research to enhance a standalone microgrid’s energy management and performance.The suggested dedicated control for the SMES comprises two loops:the outer loop,which uses the FOPI to regulate the DC-link voltage,and the inner loop,responsible for regulating the SMES current,is constructed using the intelligent FOPI(iFOPI).The FOPI+iFOPI parameters are best developed using the dandelion optimizer(DO)approach to achieve the optimum performance.The suggested FOPI+iFOPI controller’s performance is contrasted with a conventional PI controller for variations in wind speed and microgrid load.The optimal FOPI+iFOPI controller manages the voltage and frequency of the load.The behavior of the microgrid as a reaction to step changes in load and wind speed was measured using the proposed controller.MATLAB simulations were used to evaluate the recommended system’s performance.The results of the simulations showed that throughout all interruptions,the recommended microgrid provided the load with AC power with a constant amplitude and frequency.In addition,the required load demand was accurately reduced.Furthermore,the microgrid functioned incredibly well despite SMES and varying wind speeds.Results obtained under identical conditions were compared with and without the best FOPI+iFOPI controller.When utilizing the optimal FOPI+iFOPI controller with SMES,it was found that the microgrid performed better than the microgrid without SMES.
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.
基金supported by Science and Technology Project of SGCC(5108-202218280A-2-375-XG)。
文摘In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS.
基金a phased achievement of Gansu Province’s Major Science and Technology Project(W22KJ2722005)“Research on Optimal Configuration and Operation Strategy of Energy Storage under“New Energy+Energy Storage”Mode”.
文摘Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power.