The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are esta...The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are established using optimization subset regression. The results show that a linear increasing trend is very significant and seasonal change is obvious. The power load exhibits significant quasi-weekly (5 – 7 days) oscillation, quasi-by-weekly (10 – 20 days) oscillation and intraseasonal (30 – 60 days) oscillation. These oscillations are caused by atmospheric low frequency oscillation and public holidays. The variation of Guangdong daily power load is obviously in decrease on Sundays, shaping like a funnel during Chinese New Year in particular. The minimum is found at the first and second day and the power load gradually increases to normal level after the third day during the long vacation of Labor Day and National Day. Guangdong power load is the most sensitive to temperature, which is the main affecting factor, as in other areas in China. The power load also has relationship with other meteorological elements to some extent during different seasons. The maximum of power load in summer, minimum during Chinese New Year and variation during Labor Day and National Day are well fitted and predicted using the equation established by optimization subset regression and accounting for the effect of workdays and holidays.展开更多
The Climate Forecast Systems(CFS) datasets provided by National Centers for Environmental Prediction(NCEP), which cover the time from 1981 to 2008, can be used to forecast atmospheric circulation nine months ahead. Co...The Climate Forecast Systems(CFS) datasets provided by National Centers for Environmental Prediction(NCEP), which cover the time from 1981 to 2008, can be used to forecast atmospheric circulation nine months ahead. Compared with the NCEP datasets, CFS datasets successfully simulate many major features of the Asian monsoon circulation systems and exhibit reasonably high skill in simulating and predicting ENSO events. Based on the CFS forecasting results, a downscaling method of Optimal Subset Regression(OSR) and mean generational function model of multiple variables are used to forecast seasonal precipitation in Guangdong. After statistical analysis tests, sea level pressure, wind and geopotential height field are made predictors. Although the results are unstable in some individual seasons, both the OSR and multivariate mean generational function model can provide good forecasting as operational tests score more than sixty points. CFS datasets are available and updated in real time, as compared with the NCEP dataset. The downscaling forecast method based on the CFS datasets can predict three seasons of seasonal precipitation in Guangdong, enriching traditional statistical methods. However, its forecasting stability needs to be improved.展开更多
基金Platform for Meteorological Prediction of Power Load in Guangdong Province
文摘The variability characteristics of Guangdong daily power load from 2002 to 2004 and its connection to meteorological variables are analyzed with wavelet analysis and correlation analysis. Prediction equations are established using optimization subset regression. The results show that a linear increasing trend is very significant and seasonal change is obvious. The power load exhibits significant quasi-weekly (5 – 7 days) oscillation, quasi-by-weekly (10 – 20 days) oscillation and intraseasonal (30 – 60 days) oscillation. These oscillations are caused by atmospheric low frequency oscillation and public holidays. The variation of Guangdong daily power load is obviously in decrease on Sundays, shaping like a funnel during Chinese New Year in particular. The minimum is found at the first and second day and the power load gradually increases to normal level after the third day during the long vacation of Labor Day and National Day. Guangdong power load is the most sensitive to temperature, which is the main affecting factor, as in other areas in China. The power load also has relationship with other meteorological elements to some extent during different seasons. The maximum of power load in summer, minimum during Chinese New Year and variation during Labor Day and National Day are well fitted and predicted using the equation established by optimization subset regression and accounting for the effect of workdays and holidays.
基金Science and Technology Program for Guangdong Province(2005B32601007)Project of Guangdong Meteorological Bureau(2008B05)+6 种基金Natural Science Foundation of China"Project 973"(2010CB950304)Project of Meteorological Science and Technology of Guangdong Province(200902)Project for Science and Technology Planning in Guangdong(2012A061400012)Science Project for Guangdong Meteorological Bureau(2013B08)Project for Guangdong Provincial Bureau of Science and Technology(2012A030200006)Project for Meteorological Center of the South China Region,China Meteorological Administration(GRMC2012M02)Science and Technology Planning Project for Guangdong Province(2011A032100006,2012A061400012)
文摘The Climate Forecast Systems(CFS) datasets provided by National Centers for Environmental Prediction(NCEP), which cover the time from 1981 to 2008, can be used to forecast atmospheric circulation nine months ahead. Compared with the NCEP datasets, CFS datasets successfully simulate many major features of the Asian monsoon circulation systems and exhibit reasonably high skill in simulating and predicting ENSO events. Based on the CFS forecasting results, a downscaling method of Optimal Subset Regression(OSR) and mean generational function model of multiple variables are used to forecast seasonal precipitation in Guangdong. After statistical analysis tests, sea level pressure, wind and geopotential height field are made predictors. Although the results are unstable in some individual seasons, both the OSR and multivariate mean generational function model can provide good forecasting as operational tests score more than sixty points. CFS datasets are available and updated in real time, as compared with the NCEP dataset. The downscaling forecast method based on the CFS datasets can predict three seasons of seasonal precipitation in Guangdong, enriching traditional statistical methods. However, its forecasting stability needs to be improved.