During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ...During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ...The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and me...In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlation...Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlations between clad geometry and dilution(clad characteristics)and the main process parameters laser power(P_(l)),cladding speed(v_(c)),the powder feed rate(m)were obtained through application of variance analysis technique(ANOVA).The obtained correlations between the main processing parameters and the clad characteristics are discussed and a statistical model was developed.The desirability investigations using the developed statistical model were performed by considering the clad geometry,aspect ratio,dilution and hardness.Optimal parameters for cladding Stellite 6 on AISI 420 steel substrate and for cladding Nucalloy 488V on S355 J2 steel substrate were obtained.The optimal processing parameters can be applied to clad other materials with similar chemical compositions.展开更多
Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derive...Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.展开更多
The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis(GRA).The considered process pa...The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis(GRA).The considered process parameters are welding speed,tool rotation speed,shoulder diameter and plunging depth.The experiments were carried out by using Taguchi's L18 factorial design of experiment.The processes parameters were optimized and ranked the parameters based on the GRA.The percentage influence of each process parameter on the weld quality was also quantified.A validation experimental run was conducted using optimal process condition,which was obtained from the analysis,to show the improvement in mechanical properties of the joint.This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.展开更多
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)...Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.展开更多
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul...Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.展开更多
Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid p...Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi...The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.展开更多
Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and proces...Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
At present, there are some static code analyses and optimizations that can be applied to Concurrent C programs to improve their performance or verify their logical correctness. These analyses and optimizations are int...At present, there are some static code analyses and optimizations that can be applied to Concurrent C programs to improve their performance or verify their logical correctness. These analyses and optimizations are inter-process. In order to make their implementation easy, we propose a new method to construct an optimizing compiling system CCOC for Concurrent C. CCOC supports inter-process code analysis and optimization to Concurrent C programs and does not affect the system's portability and separate compilation of source programs. We also discuss some implementation details of CCOC briefly.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51575528)。
文摘During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
基金supported by the Innovation Team and Talents Cultivation Program of the National Administration of Traditional Chinese Medicine(ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(226-2022-00226).
文摘The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金supported by Priority Academic Program Development of Jiangsu Higher Educatior(PPZY2015A044).
文摘In the cooling crystallization process of thiourea,a significant issue is the excessively wide crystal size distribution(CSD)and the abundance of fine crystals.This investigation delves into the growth kinetics and mechanisms governing thiourea crystals during the cooling crystallization process.The fitting results indicate that the crystal growth rate coefficient,falls within the range of 10^(-7)to 10^(-8)m·s^(-1).Moreover,with decreasing crystallization temperature,the growth process undergoes a transition from diffusion-controlled to surface reaction-controlled,with temperature primarily influencing the surface reaction process and having a limited impact on the diffusion process.Comparing the crystal growth rate,and the diffusion-limited growth rate,at different temperatures,it is observed that the crystal growth process can be broadly divided into two stages.At temperatures above 25℃,1/qd(qd is diffusion control index)approaches 1,indicating the predominance of diffusion control.Conversely,at temperatures below 25℃,1/qd increases rapidly,signifying the dominance of surface reaction control.To address these findings,process optimization was conducted.During the high-temperature phase(35-25℃),agitation was increased to reduce the limitations posed by bulk-phase diffusion in the crystallization process.In the low-temperature phase(25-15℃),agitation was reduced to minimize crystal breakage.The optimized process resulted in a thiourea crystal product with a particle size distribution predominantly ranging from 0.7 to 0.9 mm,accounting for 84%of the total.This study provides valuable insights into resolving the issue of excessive fine crystals in the thiourea crystallization process.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金carried out under project number M72.7.09328 within the framework of the Research Program of the Materials innovation institute M2i(www.m2i.nl)。
文摘Application of statistical methods to optimize the process parameters was achieved by employing full factorial design of experiments,which was accomplished by cladding using stepwise ramped laser power.The correlations between clad geometry and dilution(clad characteristics)and the main process parameters laser power(P_(l)),cladding speed(v_(c)),the powder feed rate(m)were obtained through application of variance analysis technique(ANOVA).The obtained correlations between the main processing parameters and the clad characteristics are discussed and a statistical model was developed.The desirability investigations using the developed statistical model were performed by considering the clad geometry,aspect ratio,dilution and hardness.Optimal parameters for cladding Stellite 6 on AISI 420 steel substrate and for cladding Nucalloy 488V on S355 J2 steel substrate were obtained.The optimal processing parameters can be applied to clad other materials with similar chemical compositions.
文摘Hydroconversion of coal tar to produce aromatic hydrocarbons(BTX)represents a crucial strategy for the highvalue hierarchical utilization of coal.This study focused on the hydrocracking of hydrorefined products derived from coal tar to enhance the production of benzene,toluene,and xylene(BTX).Various reaction conditions,including reaction temperature,hydrogen pressure,space velocity,and hydrogen-to-oil volume ratio,were systematically explored to optimize BTX yields while also considering the process’s economic feasibility.The results indicate that increasing the reaction temperature from 360℃ to 390℃ significantly favors the production of BTX,with yields increasing from 21.42%to 41.14%.Similarly,an increase in hydrogen pressure from 4 MPa to 6 MPa boosts BTX production,with yields rising from 36.31%to 41.14%.Reducing the space velocity from 2 h^(-1) to 0.5 h^(-1) also favors the BTX production process,with yields increasing from 37.96%to 45.13%.Furthermore,raising the hydrogen-to-oil volume ratio from 750 to 1500 improves BTX yields from 41.61%to 45.44%.Through economic analysis,the optimal conditions for BTX production were identified as a reaction temperature of 390℃,hydrogen pressure of 5-6 MPa,space velocity of 1 h^(-1),and hydrogen-to-oil volume ratio of 1000,achieving a BTX yield of 43.73%.This investigation highlights the importance of a holistic evaluation of hydrocracking conditions to optimize BTX production.Furthermore,the findings offer valuable insights for the design and operation of industrial hydrocracking processes aimed at efficiently converting coal tar-derived hydrorefined feedstock into BTX.
基金The authors acknowledge the Science and Engineering Research Board,Department of Science and Technology,India,for funding the present research work[grant number SERB/F/2767/2012-13].
文摘The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis(GRA).The considered process parameters are welding speed,tool rotation speed,shoulder diameter and plunging depth.The experiments were carried out by using Taguchi's L18 factorial design of experiment.The processes parameters were optimized and ranked the parameters based on the GRA.The percentage influence of each process parameter on the weld quality was also quantified.A validation experimental run was conducted using optimal process condition,which was obtained from the analysis,to show the improvement in mechanical properties of the joint.This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.
基金Meridian Lightweight Technologies Inc.,Strathroy,Ontario Canadathe University of Windsor,Windsor,Ontario,Canada for supporting this workpart of a large project funded by Meridian Lightweight Technologies,Inc.
文摘Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation.
基金Supported by National Natural Science Foundation of China (Grant No.U21A20122)Zhejiang Provincial Natural Science Foundation of China (Grant No.LY22E050012)+2 种基金China Postdoctoral Science Foundation (Grant Nos.2023T160580,2023M743102)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China (Grant No.GZKF-202225)Students in Zhejiang Province Science and Technology Innovation Plan of China (Grant No.2023R403073)。
文摘Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.
基金Project(50964010) supported by the National Natural Science Foundation of ChinaProject(090WCGA894) supported by the International S&T Cooperation Program of Gansu Province,China
文摘Semisolid processing is now a commercially successful manufacturing route to produce net-shape parts in automotive industry. The conspicuous results of alloy optimization with thermodynamic simulations for semisolid processing of commercial AM60 alloy were present. The results indicate that the available processing temperature range of AM60 alloy is 170 ℃. The temperature sensitivity of solid fraction decreases with increasing solid fraction or with decreasing temperature above eutectic reaction temperature of AM60 alloy. When the solid fraction φs is 0.4, corresponding processing temperature is 603.8 ℃ and the sensitivity -dφs/dT is 0.0184. The effects of various alloying elements on the solidification behavior and SSM processability of AM60 alloy were calculated with Pandat software.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).
基金supported in part by the National Key Research and Development Program of China(2019YFB1503700)the Hunan Natural Science Foundation-Science and Education Joint Project(2019JJ70063)。
文摘The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.
文摘Purpose-The purpose of this paper is to eliminate the fluctuations in train arrival and departure times caused by skewed distributions in interval operation times.These fluctuations arise from random origin and process factors during interval operations and can accumulate over multiple intervals.The aim is to enhance the robustness of high-speed rail station arrival and departure track utilization schemes.Design/methodologylapproach-To achieve this objective,the paper simulates actual train operations,incorporating the fluctuations in interval operation times into the utilization of arrival and departure tracks at the station.The Monte Carlo simulation method is adopted to solve this problem.This approach transforms a nonlinear model,which includes constraints from probability distribution functions and is difficult to solve directly,into a linear programming model that is easier to handle.The method then linearly weights two objectives to optimize the solution.Findings-Through the application of Monte Carlo simulation,the study successfully converts the complex nonlinear model with probability distribution function constraints into a manageable linear programming model.By continuously adjusting the weighting coefficients of the linear objectives,the method is able to optimize the Pareto solution.Notably,this approach does not require extensive scene data to obtain a satisfactory Pareto solution set.Originality/value-The paper contributes to the field by introducing a novel method for optimizing high-speed rail station arrival and departure track utilization in the presence of fluctuations in interval operation times.The use of Monte Carlo simulation to transform the problem into a tractable linear programming model represents a significant advancement.Furthermore,the method's ability to produce satisfactory Pareto solutions without relying on extensive data sets adds to its practical value and applicability in real-world scenarios.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
文摘At present, there are some static code analyses and optimizations that can be applied to Concurrent C programs to improve their performance or verify their logical correctness. These analyses and optimizations are inter-process. In order to make their implementation easy, we propose a new method to construct an optimizing compiling system CCOC for Concurrent C. CCOC supports inter-process code analysis and optimization to Concurrent C programs and does not affect the system's portability and separate compilation of source programs. We also discuss some implementation details of CCOC briefly.