To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security con...To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security constraints of on-site maintenance operations.Considering the computational complexity of the mixed integer programming(MIP)problem,a machine learning(ML)approach is presented to solve the transmission maintenance scheduling model efficiently.The value of the branching score factor value is optimized by Bayesian optimization(BO)in the proposed algorithm,which plays an important role in the size of the branch-and-bound search tree in the solution process.The test case in a modified version of the IEEE 30-bus system shows that the proposed algorithm can not only reach the optimal solution but also improve the computational efficiency.展开更多
This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas sy...This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.展开更多
In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil fl...In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.展开更多
This paper deals with the modeling, analysis and optimization of a specific kind of real industrial problems. This class of problems is known in the literature as Cyclic Hoist Scheduling Problem (CHSP). In such clas...This paper deals with the modeling, analysis and optimization of a specific kind of real industrial problems. This class of problems is known in the literature as Cyclic Hoist Scheduling Problem (CHSP). In such class of problems, several jobs have to flow through a production line according to an ordered bath sequence. The CHSPs appear in the manufacturing facilities to achieve a mass production and to search a repetitive sequence of moves for the hoist. In this paper, we develop P-Temporal Petri Net models to represent the behavior and validate certain qualitative properties of the basic production line. Afterward, complex configurations of the production line are modeled and their properties such as reachability of desired functioning (cyclic operation), deadlock-free, resource sharing and management are checked and validated. A mathematical analysis and a simulation study of all proposed Petri net models are carried out using mathematical fundaments of Petri nets and a Visual Object Net ++ tool. The second part of the paper deals with the development of a mixed integer linear programming models to optimize processing of each line configuration. Optimal manufacturing plans of the studied system with cyclic processing sequences are defined and the feasibility of optimal cyclic scheduling of each configuration is proved.展开更多
In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A ...In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A decoupling strategy is proposed for the solution of the three-scale model,which uses our previously proposed reactor scale model for operation optimization and then transfers the obtained results as a parameter table in the joint MILP optimization of plant-supply chain scale for cyclic scheduling.This optimization framework simplifies the fundamental mixed-integer nonlinear programming(MINLP)into several sub-models,and improves the interpretability and extendibility.In the evaluation of an industrial case,a profit increase at a percentage of 3.25%is attained in optimization compared to the practical operations.Further sensitivity analysis is carried out for strategy evolving study when price policy,supply chain,and production requirement parameters are varied.These results could provide useful suggestions for petrochemical enterprises on thermal cracking production.展开更多
In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, ...In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, we decide which programs are accepted. Secondly, the risk preference coefficient of the decision maker is introduced. Thirdly, the min-max robust optimization model of the uncertain program show scheduling is built to minimize the performance cost and determine the sequence of these programs. Based on the above model, an effective algorithm for the original problem is proposed. The computational experiment shows that the performance’s cost (revenue) will increase (decrease) with decision maker’s risk aversion.展开更多
The paper gives an optimization model for a special type of exercise session, circuit training. Circuit training involves a series of exercises performed in rotation with minimal rest. The goal of our model is to mini...The paper gives an optimization model for a special type of exercise session, circuit training. Circuit training involves a series of exercises performed in rotation with minimal rest. The goal of our model is to minimize the total circuit time while accomplishing a number of training goals. Our primary model is a linear integer program;additional constraints are added for muscle group and intensity requirements. The model is implemented and tested on algebraic modeling language AMPL. Our computational results show that the model can return an exercise schedule for a typical real-life data set within a few seconds.展开更多
Learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization techniques.As real-world optimiz...Learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization techniques.As real-world optimization problems frequently share common structures,L2O provides a tool to exploit these structures for better or faster solutions.This tutorial dives deep into L2O techniques,introducing how to accelerate optimization algorithms,promptly estimate the solutions,or even reshape the optimization problem itself,making it more adaptive to real-world applications.By considering the prerequisites for successful applications of L2O and the structure of the optimization problems at hand,this tutorial provides a comprehensive guide for practitioners and researchers alike.展开更多
Combinatorial Optimization(CO)problems have been intensively studied for decades with a wide range of applications.For some classic CO problems,e.g.,the Traveling Salesman Problem(TSP),both traditional planning algori...Combinatorial Optimization(CO)problems have been intensively studied for decades with a wide range of applications.For some classic CO problems,e.g.,the Traveling Salesman Problem(TSP),both traditional planning algorithms and the emerging reinforcement learning have made solid progress in recent years.However,for CO problems with nested sub-tasks,neither end-to-end reinforcement learning algorithms nor traditional evolutionary methods can obtain satisfactory strategies within a limited time and computational resources.In this paper,we propose an algorithmic framework for solving CO problems with nested sub-tasks,in which learning and planning algorithms can be combined in a modular way.We validate our framework in the Job-Shop Scheduling Problem(JSSP),and the experimental results show that our algorithm has good performance in both solution qualities and model generalizations.展开更多
Unmanned Aerial Vehicles(UAVs)offer a strategic solution to address the increasing demand for cellular connectivity in rural,remote,and disaster-hit regions lacking traditional infrastructure.However,UAVs’limited onb...Unmanned Aerial Vehicles(UAVs)offer a strategic solution to address the increasing demand for cellular connectivity in rural,remote,and disaster-hit regions lacking traditional infrastructure.However,UAVs’limited onboard energy storage necessitates optimized,energy-efficient communication strategies and intelligent energy expenditure to maximize productivity.This work proposes a novel joint optimization model to coordinate charging operations across multiple UAVs functioning as aerial base stations.The model optimizes charging station assignments and trajectories to maximize UAV flight time and minimize overall energy expenditure.By leveraging both static ground base stations and mobile supercharging stations for opportunistic charging while considering battery chemistry constraints,the mixed integer linear programming approach reduces energy usage by 9.1%versus conventional greedy heuristics.The key results provide insights into separating charging strategies based on UAV mobility patterns,fully utilizing all available infrastructure through balanced distribution,and strategically leveraging existing base stations before deploying dedicated charging assets.Compared to myopic localized decisions,the globally optimized solution extends battery life and enhances productivity.Overall,this work marks a significant advance in UAV energy management by consolidating multiple improvements within a unified coordination framework focused on joint charging optimization across UAV fleets.The model lays a critical foundation for energy-efficient aerial network deployments to serve the connectivity needs of the future.展开更多
In this paper, a new computation method and an optimization algorithm are presented for feedrate scheduling of five-axis machining in compliance with both machine drive limits and process limits. Five-axis machine too...In this paper, a new computation method and an optimization algorithm are presented for feedrate scheduling of five-axis machining in compliance with both machine drive limits and process limits. Five-axis machine tool with its ability of controlling tool orientation to follow the sculptured surface contour has been widely used in modern manufacturing industry. Feedrate scheduling serving as a kernel of CNC control system plays a critical role to ensure the required machining accuracy and reliability for five-axis machining. Due to the nonlinear coupling effects of all involved drive axes and the saturation limit of servo motors, the feedrate scheduling for multi-axis machining has long been recognized and remains as a critical challenge for achieving five-axis machine tools’ full capacity and advantage. To solve the nonlinearity nature of the five-axis feedrate scheduling problems, a relaxation mathematical process is presented for relaxing both the drive motors’ physical limitations and the kinematic constraints of five-axis tool motions. Based on the primary optimization variable of feedrate, the presented method analytically linearizes the machining-related constraints, in terms of the machines’ axis velocities, axis accelerations and axis jerks. The nonlinear multi-constrained feedrate scheduling problem is transformed into a manageable linear programming problem. An optimization algorithm is presented to find the optimal feedrate scheduling solution for the five-axis machining problems. Both computer implementation and laboratorial experiment testing by actual machine cutting were conducted and presented in this paper. The experiment results demonstrate that the proposed method can effectively generate efficient feedrate scheduling for five-axis machining with constraints of the machine tool physical constraints and limits. Compared with other existing numerical methods, the proposed method is able to find an accurate analytical solution for the nonlinear constrained five-axis feedrate scheduling problems without compromising the efficiency of the machining processes.展开更多
To ensure sustainability in agriculture,many optimization problems need to be solved.An important one of them is harvest scheduling problem.In this study,the harvest scheduling problem for the tea is discussed.The tea...To ensure sustainability in agriculture,many optimization problems need to be solved.An important one of them is harvest scheduling problem.In this study,the harvest scheduling problem for the tea is discussed.The tea harvest problem includes the creating a harvest schedule by considering the farmers'quotas under the purchase location and factory capacity.Tea harvesting is carried out in cooperation with the farmer-factory.Factory man-agement is interested in using its resources.So,the factory capacity,purchase location capacities and number of expeditions should be considered during the harvesting process.When the farmer's side is examined,it is seen that the real professions of farmers are different.On harvest days,farmers often cannot attend to their primary professions.Considering the harvest day preferences of farmers in creating the harvest schedule are of great importance for sustainability in agriculture.Two different mathematical models are proposed to solve this problem.The first model minimizes the number of weekly expeditions of factory vehicles within the factor and purchase location capacity restrictions.The second model minimizes the number of expeditions and aims to comply with the preferences of the farmers as much as possible.A sample application was performed in a region with 12 purchase locations,988 farmers,and 3392 decares of tea fields.The results show that the compli-ance rate of farmers to harvesting preferences could be increased from 52%to 97%,and this situation did not affect the number of expeditions of the factory.This result shows that considering the farmers'preferences on the harvest day will have no negative impact on the factory.On the contrary,it was concluded that this situation increases sustainability and encouragement in agriculture.Furthermore,the results show that models are effective for solving the problem.展开更多
With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topolog...With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topology owing to the network topology optimization(NTO)technique can ensure the secure and economic operation of power systems.This paper proposes a TMS model considering NTO to decrease the wind curtailment without adding control devices.The problem is formulated as a two-stage stochastic mixed-integer programming model.The first stage arranges the maintenance periods of transmission lines.The second stage optimizes the transmission network topology to minimize the maintenance cost and system operation in different wind speed scenarios.The proposed model cannot be solved efficiently with off-theshelf solvers due to the binary variables in both stages.Therefore,the progressive hedging algorithm is applied.The results on the modified IEEE RTS-79 system show that the proposed method can reduce the negative impact of transmission maintenance on wind accommodation by 65.49%,which proves its effectiveness.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
Image fusion is an imaging technique to visualize information from multiple imaging sources in one single image,which is widely used in remote sensing,medical imaging etc.In this work,we study two variational approach...Image fusion is an imaging technique to visualize information from multiple imaging sources in one single image,which is widely used in remote sensing,medical imaging etc.In this work,we study two variational approaches to image fusion which are closely related to the standard TV-L_(2) and TV-L_(1) image approximation methods.We investigate their convex optimization formulations,under the perspective of primal and dual,and propose their associated new image decomposition models.In addition,we consider the TV-L_(1) based image fusion approach and study the specified problem of fusing two discrete-constrained images f_(1)(x)∈L_(1) and f_(2)(x)∈L_(2),where L_(1) and L_(2) are the sets of linearly-ordered discrete values.We prove that the TV-L_(1) based image fusion actually gives rise to the exact convex relaxation to the corresponding nonconvex image fusion constrained by the discretevalued set u(x)∈L_(1)∪L_(2).This extends the results for the global optimization of the discrete-constrained TV-L_(1) image approximation[8,36]to the case of image fusion.As a big numerical advantage of the two proposed dual models,we show both of them directly lead to new fast and reliable algorithms,based on modern convex optimization techniques.Experiments with medical images,remote sensing images and multi-focus images visibly show the qualitative differences between the two studied variational models of image fusion.We also apply the new variational approaches to fusing 3D medical images.展开更多
基金supported by the National Key Research and Development Program of China(Basic Research Class)(No.2017YFB0903000)the National Natural Science Foundation of China(No.U1909201).
文摘To maximize the maintenance willingness of the owner of transmission lines,this study presents a transmission maintenance scheduling model that considers the energy constraints of the power system and the security constraints of on-site maintenance operations.Considering the computational complexity of the mixed integer programming(MIP)problem,a machine learning(ML)approach is presented to solve the transmission maintenance scheduling model efficiently.The value of the branching score factor value is optimized by Bayesian optimization(BO)in the proposed algorithm,which plays an important role in the size of the branch-and-bound search tree in the solution process.The test case in a modified version of the IEEE 30-bus system shows that the proposed algorithm can not only reach the optimal solution but also improve the computational efficiency.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61673161 and 51807134and in part by the program of fundamental research of the Siberian Branch of Russian Academy of Sciences and carried out within the framework of the research project III.17.3.1,Reg.No.AAAA-A17-117030310442-8.
文摘This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.
基金Supported by National High Technology Research and Development Program of China(2013AA040704)the Fund for the National Natural Science Foundation of China(61374203)
文摘In this paper,an oil well production scheduling problem for the light load oil well during petroleum field exploitation was studied.The oil well production scheduling was to determine the turn on/off status and oil flow rates of the wells in a given oil reservoir,subject to a number of constraints such as minimum up/down time limits and well grouping.The problem was formulated as a mixed integer nonlinear programming model that minimized the total production operating cost and start-up cost.Due to the NP-hardness of the problem,an improved particle swarm optimization(PSO) algorithm with a new velocity updating formula was developed to solve the problem approximately.Computational experiments on randomly generated instances were carried out to evaluate the performance of the model and the algorithm's effectiveness.Compared with the commercial solver CPLEX,the improved PSO can obtain high-quality schedules within a much shorter running time for all the instances.
文摘This paper deals with the modeling, analysis and optimization of a specific kind of real industrial problems. This class of problems is known in the literature as Cyclic Hoist Scheduling Problem (CHSP). In such class of problems, several jobs have to flow through a production line according to an ordered bath sequence. The CHSPs appear in the manufacturing facilities to achieve a mass production and to search a repetitive sequence of moves for the hoist. In this paper, we develop P-Temporal Petri Net models to represent the behavior and validate certain qualitative properties of the basic production line. Afterward, complex configurations of the production line are modeled and their properties such as reachability of desired functioning (cyclic operation), deadlock-free, resource sharing and management are checked and validated. A mathematical analysis and a simulation study of all proposed Petri net models are carried out using mathematical fundaments of Petri nets and a Visual Object Net ++ tool. The second part of the paper deals with the development of a mixed integer linear programming models to optimize processing of each line configuration. Optimal manufacturing plans of the studied system with cyclic processing sequences are defined and the feasibility of optimal cyclic scheduling of each configuration is proved.
基金the National Natural Science Foundation of China for its financial support(U1462206,21991100,21991104)。
文摘In order to explore the potential of profit margin improvement,a novel three-scale integrated optimization model of furnace simulation,cyclic scheduling,and supply chain of ethylene plants is proposed and evaluated.A decoupling strategy is proposed for the solution of the three-scale model,which uses our previously proposed reactor scale model for operation optimization and then transfers the obtained results as a parameter table in the joint MILP optimization of plant-supply chain scale for cyclic scheduling.This optimization framework simplifies the fundamental mixed-integer nonlinear programming(MINLP)into several sub-models,and improves the interpretability and extendibility.In the evaluation of an industrial case,a profit increase at a percentage of 3.25%is attained in optimization compared to the practical operations.Further sensitivity analysis is carried out for strategy evolving study when price policy,supply chain,and production requirement parameters are varied.These results could provide useful suggestions for petrochemical enterprises on thermal cracking production.
文摘In this paper, the problem of program performance scheduling with accepting strategy is studied. Considering the uncertainty of actual situation, the duration of a program is expressed as a bounded interval. Firstly, we decide which programs are accepted. Secondly, the risk preference coefficient of the decision maker is introduced. Thirdly, the min-max robust optimization model of the uncertain program show scheduling is built to minimize the performance cost and determine the sequence of these programs. Based on the above model, an effective algorithm for the original problem is proposed. The computational experiment shows that the performance’s cost (revenue) will increase (decrease) with decision maker’s risk aversion.
文摘The paper gives an optimization model for a special type of exercise session, circuit training. Circuit training involves a series of exercises performed in rotation with minimal rest. The goal of our model is to minimize the total circuit time while accomplishing a number of training goals. Our primary model is a linear integer program;additional constraints are added for muscle group and intensity requirements. The model is implemented and tested on algebraic modeling language AMPL. Our computational results show that the model can return an exercise schedule for a typical real-life data set within a few seconds.
文摘Learning to optimize(L2O)stands at the intersection of traditional optimization and machine learning,utilizing the capabilities of machine learning to enhance conventional optimization techniques.As real-world optimization problems frequently share common structures,L2O provides a tool to exploit these structures for better or faster solutions.This tutorial dives deep into L2O techniques,introducing how to accelerate optimization algorithms,promptly estimate the solutions,or even reshape the optimization problem itself,making it more adaptive to real-world applications.By considering the prerequisites for successful applications of L2O and the structure of the optimization problems at hand,this tutorial provides a comprehensive guide for practitioners and researchers alike.
基金supported by the National Key Research and Development Program of China(No.2020AAA0106302)National Natural Science Foundation of China(Nos.62061136001,92248303,62106123,and 61972224)Tsinghua Institute for Guo Qiang,and the High Performance Computing Center,Tsinghua University.
文摘Combinatorial Optimization(CO)problems have been intensively studied for decades with a wide range of applications.For some classic CO problems,e.g.,the Traveling Salesman Problem(TSP),both traditional planning algorithms and the emerging reinforcement learning have made solid progress in recent years.However,for CO problems with nested sub-tasks,neither end-to-end reinforcement learning algorithms nor traditional evolutionary methods can obtain satisfactory strategies within a limited time and computational resources.In this paper,we propose an algorithmic framework for solving CO problems with nested sub-tasks,in which learning and planning algorithms can be combined in a modular way.We validate our framework in the Job-Shop Scheduling Problem(JSSP),and the experimental results show that our algorithm has good performance in both solution qualities and model generalizations.
文摘Unmanned Aerial Vehicles(UAVs)offer a strategic solution to address the increasing demand for cellular connectivity in rural,remote,and disaster-hit regions lacking traditional infrastructure.However,UAVs’limited onboard energy storage necessitates optimized,energy-efficient communication strategies and intelligent energy expenditure to maximize productivity.This work proposes a novel joint optimization model to coordinate charging operations across multiple UAVs functioning as aerial base stations.The model optimizes charging station assignments and trajectories to maximize UAV flight time and minimize overall energy expenditure.By leveraging both static ground base stations and mobile supercharging stations for opportunistic charging while considering battery chemistry constraints,the mixed integer linear programming approach reduces energy usage by 9.1%versus conventional greedy heuristics.The key results provide insights into separating charging strategies based on UAV mobility patterns,fully utilizing all available infrastructure through balanced distribution,and strategically leveraging existing base stations before deploying dedicated charging assets.Compared to myopic localized decisions,the globally optimized solution extends battery life and enhances productivity.Overall,this work marks a significant advance in UAV energy management by consolidating multiple improvements within a unified coordination framework focused on joint charging optimization across UAV fleets.The model lays a critical foundation for energy-efficient aerial network deployments to serve the connectivity needs of the future.
基金supported by the National Natural Science Foundation of China (Grant No. 51525501)the Science Challenge Project (Grant No. TZ2016006-0102)+1 种基金the Dalian Science and Technology Project (Grant No. 2016RD08)Dr. Y.S. Lee was partially supported by the National Science Foundation (Grant No. CMMI-1547105) to North Carolina State University
文摘In this paper, a new computation method and an optimization algorithm are presented for feedrate scheduling of five-axis machining in compliance with both machine drive limits and process limits. Five-axis machine tool with its ability of controlling tool orientation to follow the sculptured surface contour has been widely used in modern manufacturing industry. Feedrate scheduling serving as a kernel of CNC control system plays a critical role to ensure the required machining accuracy and reliability for five-axis machining. Due to the nonlinear coupling effects of all involved drive axes and the saturation limit of servo motors, the feedrate scheduling for multi-axis machining has long been recognized and remains as a critical challenge for achieving five-axis machine tools’ full capacity and advantage. To solve the nonlinearity nature of the five-axis feedrate scheduling problems, a relaxation mathematical process is presented for relaxing both the drive motors’ physical limitations and the kinematic constraints of five-axis tool motions. Based on the primary optimization variable of feedrate, the presented method analytically linearizes the machining-related constraints, in terms of the machines’ axis velocities, axis accelerations and axis jerks. The nonlinear multi-constrained feedrate scheduling problem is transformed into a manageable linear programming problem. An optimization algorithm is presented to find the optimal feedrate scheduling solution for the five-axis machining problems. Both computer implementation and laboratorial experiment testing by actual machine cutting were conducted and presented in this paper. The experiment results demonstrate that the proposed method can effectively generate efficient feedrate scheduling for five-axis machining with constraints of the machine tool physical constraints and limits. Compared with other existing numerical methods, the proposed method is able to find an accurate analytical solution for the nonlinear constrained five-axis feedrate scheduling problems without compromising the efficiency of the machining processes.
基金the Scientific Research Projects Coordination Unit of Kırıkkale University under the Graduate Thesis Programme by grant number 2023/034.
文摘To ensure sustainability in agriculture,many optimization problems need to be solved.An important one of them is harvest scheduling problem.In this study,the harvest scheduling problem for the tea is discussed.The tea harvest problem includes the creating a harvest schedule by considering the farmers'quotas under the purchase location and factory capacity.Tea harvesting is carried out in cooperation with the farmer-factory.Factory man-agement is interested in using its resources.So,the factory capacity,purchase location capacities and number of expeditions should be considered during the harvesting process.When the farmer's side is examined,it is seen that the real professions of farmers are different.On harvest days,farmers often cannot attend to their primary professions.Considering the harvest day preferences of farmers in creating the harvest schedule are of great importance for sustainability in agriculture.Two different mathematical models are proposed to solve this problem.The first model minimizes the number of weekly expeditions of factory vehicles within the factor and purchase location capacity restrictions.The second model minimizes the number of expeditions and aims to comply with the preferences of the farmers as much as possible.A sample application was performed in a region with 12 purchase locations,988 farmers,and 3392 decares of tea fields.The results show that the compli-ance rate of farmers to harvesting preferences could be increased from 52%to 97%,and this situation did not affect the number of expeditions of the factory.This result shows that considering the farmers'preferences on the harvest day will have no negative impact on the factory.On the contrary,it was concluded that this situation increases sustainability and encouragement in agriculture.Furthermore,the results show that models are effective for solving the problem.
基金This work was supported by the National Key R&D Program of China“Technology and application of wind power/photovoltaic power prediction for promoting renewable energy consumption”(No.2018YFB0904200)eponymous Complement S&T Program of State Grid Corporation of China(No.SGLNDKOOKJJS1800266).
文摘With the increasing penetration of renewable energy sources,transmission maintenance scheduling(TMS)will have a larger impact on the accommodation of wind power.Meanwhile,the more flexible transmission network topology owing to the network topology optimization(NTO)technique can ensure the secure and economic operation of power systems.This paper proposes a TMS model considering NTO to decrease the wind curtailment without adding control devices.The problem is formulated as a two-stage stochastic mixed-integer programming model.The first stage arranges the maintenance periods of transmission lines.The second stage optimizes the transmission network topology to minimize the maintenance cost and system operation in different wind speed scenarios.The proposed model cannot be solved efficiently with off-theshelf solvers due to the binary variables in both stages.Therefore,the progressive hedging algorithm is applied.The results on the modified IEEE RTS-79 system show that the proposed method can reduce the negative impact of transmission maintenance on wind accommodation by 65.49%,which proves its effectiveness.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
基金J.Yuan and A.Fenster gratefully acknowledge funding from the Canadian Institutes of Health Research,and the Ontario Institute of Cancer ResearchB.Miles gratefully acknowledges funding from the Graduate Program in BioMedical Engineering at the University of Western Ontario and the Computer Assisted Medical Intervention Training Program,which is funded by the Natural Sciences and Engineer-ing Research Council of Canada.A.Fenster holds a Canada Research Chair in Biomedi-cal Engineering,and acknowledges the support of the Canada Research Chair Program.
文摘Image fusion is an imaging technique to visualize information from multiple imaging sources in one single image,which is widely used in remote sensing,medical imaging etc.In this work,we study two variational approaches to image fusion which are closely related to the standard TV-L_(2) and TV-L_(1) image approximation methods.We investigate their convex optimization formulations,under the perspective of primal and dual,and propose their associated new image decomposition models.In addition,we consider the TV-L_(1) based image fusion approach and study the specified problem of fusing two discrete-constrained images f_(1)(x)∈L_(1) and f_(2)(x)∈L_(2),where L_(1) and L_(2) are the sets of linearly-ordered discrete values.We prove that the TV-L_(1) based image fusion actually gives rise to the exact convex relaxation to the corresponding nonconvex image fusion constrained by the discretevalued set u(x)∈L_(1)∪L_(2).This extends the results for the global optimization of the discrete-constrained TV-L_(1) image approximation[8,36]to the case of image fusion.As a big numerical advantage of the two proposed dual models,we show both of them directly lead to new fast and reliable algorithms,based on modern convex optimization techniques.Experiments with medical images,remote sensing images and multi-focus images visibly show the qualitative differences between the two studied variational models of image fusion.We also apply the new variational approaches to fusing 3D medical images.