期刊文献+
共找到425,789篇文章
< 1 2 250 >
每页显示 20 50 100
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
1
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted Gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Identification of time-varying system and energy-based optimization of adaptive control in seismically excited structure
2
作者 Elham Aghabarari Fereidoun Amini Pedram Ghaderi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期227-240,共14页
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ... The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems. 展开更多
关键词 integrated online identification time-varying systems structural energy multiple forgetting factor recursive least squares optimal simple adaptive control algorithm
下载PDF
A Reference Vector-Assisted Many-Objective Optimization Algorithm with Adaptive Niche Dominance Relation
3
作者 Fangzhen Ge Yating Wu +1 位作者 Debao Chen Longfeng Shen 《Intelligent Automation & Soft Computing》 2024年第2期189-211,共23页
It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence... It is still a huge challenge for traditional Pareto-dominatedmany-objective optimization algorithms to solve manyobjective optimization problems because these algorithms hardly maintain the balance between convergence and diversity and can only find a group of solutions focused on a small area on the Pareto front,resulting in poor performance of those algorithms.For this reason,we propose a reference vector-assisted algorithmwith an adaptive niche dominance relation,for short MaOEA-AR.The new dominance relation forms a niche based on the angle between candidate solutions.By comparing these solutions,the solutionwith the best convergence is found to be the non-dominated solution to improve the selection pressure.In reproduction,a mutation strategy of k-bit crossover and hybrid mutation is used to generate high-quality offspring.On 23 test problems with up to 15-objective,we compared the proposed algorithm with five state-of-the-art algorithms.The experimental results verified that the proposed algorithm is competitive. 展开更多
关键词 Many-objective optimization evolutionary algorithm Pareto dominance reference vector adaptive niche
下载PDF
An Adaptive Hybrid Optimization Strategy for Resource Allocation in Network Function Virtualization
4
作者 Chumei Wen Delu Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1617-1636,共20页
With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both local... With the rapid development of Network Function Virtualization(NFV),the problem of low resource utilizationin traditional data centers is gradually being addressed.However,existing research does not optimize both localand global allocation of resources in data centers.Hence,we propose an adaptive hybrid optimization strategy thatcombines dynamic programming and neural networks to improve resource utilization and service quality in datacenters.Our approach encompasses a service function chain simulation generator,a parallel architecture servicesystem,a dynamic programming strategy formaximizing the utilization of local server resources,a neural networkfor predicting the global utilization rate of resources and a global resource optimization strategy for bottleneck andredundant resources.With the implementation of our local and global resource allocation strategies,the systemperformance is significantly optimized through simulation. 展开更多
关键词 NFV resource allocation decision-making optimization service function
下载PDF
Multi-surrogate framework with an adaptive selection mechanism for production optimization
5
作者 Jia-Lin Wang Li-Ming Zhang +10 位作者 Kai Zhang Jian Wang Jian-Ping Zhou Wen-Feng Peng Fa-Liang Yin Chao Zhong Xia Yan Pi-Yang Liu Hua-Qing Zhang Yong-Fei Yang Hai Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期366-383,共18页
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc... Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems. 展开更多
关键词 Production optimization Multi-surrogate models Multi-evolutionary algorithms Dimension reduction Broad learning system
下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:1
6
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
下载PDF
An Enhanced Adaptive Differential Evolution Approach for Constrained Optimization Problems 被引量:1
7
作者 Wenchao Yi Zhilei Lin +2 位作者 Yong Chen Zhi Pei Jiansha Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2841-2860,共20页
Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest s... Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms. 展开更多
关键词 pbest selection mechanism adaptive differential evolution εconstrained method
下载PDF
Fault Diagnosis of Power Electronic Circuits Based on Adaptive Simulated Annealing Particle Swarm Optimization 被引量:1
8
作者 Deye Jiang Yiguang Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期295-309,共15页
In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its i... In the field of energy conversion,the increasing attention on power electronic equipment is fault detection and diagnosis.A power electronic circuit is an essential part of a power electronic system.The state of its internal components affects the performance of the system.The stability and reliability of an energy system can be improved by studying the fault diagnosis of power electronic circuits.Therefore,an algorithm based on adaptive simulated annealing particle swarm optimization(ASAPSO)was used in the present study to optimize a backpropagation(BP)neural network employed for the online fault diagnosis of a power electronic circuit.We built a circuit simulation model in MATLAB to obtain its DC output voltage.Using Fourier analysis,we extracted fault features.These were normalized as training samples and input to an unoptimized BP neural network and BP neural networks optimized by particle swarm optimization(PSO)and the ASAPSO algorithm.The accuracy of fault diagnosis was compared for the three networks.The simulation results demonstrate that a BP neural network optimized with the ASAPSO algorithm has higher fault diagnosis accuracy,better reliability,and adaptability and can more effectively diagnose and locate faults in power electronic circuits. 展开更多
关键词 Fault diagnosis power electronic circuit particle swarm optimization backpropagation neural network
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:1
9
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Adaptive Butterfly Optimization Algorithm(ABOA)Based Feature Selection and Deep Neural Network(DNN)for Detection of Distributed Denial-of-Service(DDoS)Attacks in Cloud
10
作者 S.Sureshkumar G.K.D.Prasanna Venkatesan R.Santhosh 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1109-1123,共15页
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz... Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches. 展开更多
关键词 Cloud computing distributed denial of service intrusion detection system adaptive butterfly optimization algorithm deep neural network
下载PDF
An Adaptive Fruit Fly Optimization Algorithm for Optimization Problems
11
作者 L. Q. Zhang J. Xiong J. K. Liu 《Journal of Applied Mathematics and Physics》 2023年第11期3641-3650,共10页
In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local ... In this paper, we present a new fruit fly optimization algorithm with the adaptive step for solving unconstrained optimization problems, which is able to avoid the slow convergence and the tendency to fall into local optimum of the standard fruit fly optimization algorithm. By using the information of the iteration number and the maximum iteration number, the proposed algorithm uses the floor function to ensure that the fruit fly swarms adopt the large step search during the olfactory search stage which improves the search speed;in the visual search stage, the small step is used to effectively avoid local optimum. Finally, using commonly used benchmark testing functions, the proposed algorithm is compared with the standard fruit fly optimization algorithm with some fixed steps. The simulation experiment results show that the proposed algorithm can quickly approach the optimal solution in the olfactory search stage and accurately search in the visual search stage, demonstrating more effective performance. 展开更多
关键词 Swarm Intelligent optimization Algorithm Fruit Fly optimization Algorithm adaptive Step Local Optimum Convergence Speed
下载PDF
Adaptive Dynamic Dipper Throated Optimization for Feature Selection in Medical Data
12
作者 Ghada Atteia El-Sayed M.El-kenawy +7 位作者 Nagwan Abdel Samee Mona M.Jamjoom Abdelhameed Ibrahim Abdelaziz A.Abdelhamid Ahmad Taher Azar Nima Khodadadi Reham A.Ghanem Mahmoud Y.Shams 《Computers, Materials & Continua》 SCIE EI 2023年第4期1883-1900,共18页
The rapid population growth results in a crucial problem in the early detection of diseases inmedical research.Among all the cancers unveiled,breast cancer is considered the second most severe cancer.Consequently,an e... The rapid population growth results in a crucial problem in the early detection of diseases inmedical research.Among all the cancers unveiled,breast cancer is considered the second most severe cancer.Consequently,an exponential rising in death cases incurred by breast cancer is expected due to the rapid population growth and the lack of resources required for performing medical diagnoses.Utilizing recent advances in machine learning could help medical staff in diagnosing diseases as they offer effective,reliable,and rapid responses,which could help in decreasing the death risk.In this paper,we propose a new algorithm for feature selection based on a hybrid between powerful and recently emerged optimizers,namely,guided whale and dipper throated optimizers.The proposed algorithm is evaluated using four publicly available breast cancer datasets.The evaluation results show the effectiveness of the proposed approach from the accuracy and speed perspectives.To prove the superiority of the proposed algorithm,a set of competing feature selection algorithms were incorporated into the conducted experiments.In addition,a group of statistical analysis experiments was conducted to emphasize the superiority and stability of the proposed algorithm.The best-achieved breast cancer prediction average accuracy based on the proposed algorithm is 99.453%.This result is achieved in an average time of 3.6725 s,the best result among all the competing approaches utilized in the experiments. 展开更多
关键词 Medical dataset breast cancer guided whale optimizer dipper throated optimizer feature selection META-HEURISTICS
下载PDF
Multi-Material Topology Optimization for Spatial-Varying Porous Structures 被引量:1
13
作者 Chengwan Zhang Kai Long +4 位作者 Zhuo Chen Xiaoyu Yang Feiyu Lu Jinhua Zhang Zunyi Duan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期369-390,共22页
This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volu... This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials.The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass,as well as the local volume fraction of all phases.The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function,avoiding the parameter dependence in the conventional aggregation process.Furthermore,the local volume percentage can be precisely satisfied.The effects including the globalmass bound,the influence radius and local volume percentage on final designs are exploited through numerical examples.The numerical results also reveal that porous structures keep a balance between the bulk design and periodic design in terms of the resulting compliance.All results,including those for irregular structures andmultiple volume fraction constraints,demonstrate that the proposedmethod can provide an efficient solution for multiple material infill structures. 展开更多
关键词 Topology optimization porous structures local volume fraction augmented lagrangian multiple materials
下载PDF
Adaptive Multi-Updating Strategy Based Particle Swarm Optimization
14
作者 Dongping Tian Bingchun Li +3 位作者 Jing Liu Chen Liu Ling Yuan Zhongzhi Shi 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2783-2807,共25页
Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers fr... Particle swarm optimization(PSO)is a stochastic computation tech-nique that has become an increasingly important branch of swarm intelligence optimization.However,like other evolutionary algorithms,PSO also suffers from premature convergence and entrapment into local optima in dealing with complex multimodal problems.Thus this paper puts forward an adaptive multi-updating strategy based particle swarm optimization(abbreviated as AMS-PSO).To start with,the chaotic sequence is employed to generate high-quality initial particles to accelerate the convergence rate of the AMS-PSO.Subsequently,according to the current iteration,different update schemes are used to regulate the particle search process at different evolution stages.To be specific,two different sets of velocity update strategies are utilized to enhance the exploration ability in the early evolution stage while the other two sets of velocity update schemes are applied to improve the exploitation capability in the later evolution stage.Followed by the unequal weightage of acceleration coefficients is used to guide the search for the global worst particle to enhance the swarm diversity.In addition,an auxiliary update strategy is exclusively leveraged to the global best particle for the purpose of ensuring the convergence of the PSO method.Finally,extensive experiments on two sets of well-known benchmark functions bear out that AMS-PSO outperforms several state-of-the-art PSOs in terms of solution accuracy and convergence rate. 展开更多
关键词 Particle swarm optimization local optima acceleration coefficients swarm diversity premature convergence
下载PDF
Adaptive Optimal Output Regulation of Interconnected Singularly Perturbed Systems With Application to Power Systems
15
作者 Jianguo Zhao Chunyu Yang +2 位作者 Weinan Gao Linna Zhou Xiaomin Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期595-607,共13页
This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the sl... This article studies the adaptive optimal output regulation problem for a class of interconnected singularly perturbed systems(SPSs) with unknown dynamics based on reinforcement learning(RL).Taking into account the slow and fast characteristics among system states,the interconnected SPS is decomposed into the slow time-scale dynamics and the fast timescale dynamics through singular perturbation theory.For the fast time-scale dynamics with interconnections,we devise a decentralized optimal control strategy by selecting appropriate weight matrices in the cost function.For the slow time-scale dynamics with unknown system parameters,an off-policy RL algorithm with convergence guarantee is given to learn the optimal control strategy in terms of measurement data.By combining the slow and fast controllers,we establish the composite decentralized adaptive optimal output regulator,and rigorously analyze the stability and optimality of the closed-loop system.The proposed decomposition design not only bypasses the numerical stiffness but also alleviates the high-dimensionality.The efficacy of the proposed methodology is validated by a load-frequency control application of a two-area power system. 展开更多
关键词 adaptive optimal control decentralized control output regulation reinforcement learning(RL) singularly perturbed systems(SPSs)
下载PDF
Multi-Objective Adaptive Optimization Model Predictive Control:Decreasing Carbon Emissions from a Zinc Oxide Rotary Kiln
16
作者 Ke Wei Keke Huang +1 位作者 Chunhua Yang Weihua Gui 《Engineering》 SCIE EI CAS CSCD 2023年第8期96-105,共10页
The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality ... The zinc oxide rotary kiln,as an essential piece of equipment in the zinc smelting industrial process,is presenting new challenges in process control.China’s strategy of achieving a carbon peak and carbon neutrality is putting new demands on the industry,including green production and the use of fewer resources;thus,traditional stability control is no longer suitable for multi-objective control tasks.Although researchers have revealed the principle of the rotary kiln and set up computational fluid dynamics(CFD)simulation models to study its dynamics,these models cannot be directly applied to process control due to their high computational complexity.To address these issues,this paper proposes a multi-objective adaptive optimization model predictive control(MAO-MPC)method based on sparse identification.More specifically,with a large amount of data collected from a CFD model,a sparse regression problem is first formulated and solved to obtain a reduction model.Then,a two-layered control framework including real-time optimization(RTO)and model predictive control(MPC)is designed.In the RTO layer,an optimization problem with the goal of achieving optimal operation performance and the lowest possible resource consumption is set up.By solving the optimization problem in real time,a suitable setting value is sent to the MPC layer to ensure that the zinc oxide rotary kiln always functions in an optimal state.Our experiments show the strength and reliability of the proposed method,which reduces the usage of coal while maintaining high profits. 展开更多
关键词 Zinc oxide rotary kiln Model reduction Sparse identification Real-time optimization Model predictive control Process control
下载PDF
An Improved JSO and Its Application in Spreader Optimization of Large Span Corridor Bridge
17
作者 Shude Fu Xinye Wu +3 位作者 Wenjie Wang Yixin Hu Zhengke Li Feng Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2357-2382,共26页
In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strate... In this paper,given the shortcomings of jellyfish search algorithmwith low search ability in the early stage and easy to fall into local optimal solution,this paper introduces adaptive weight function and elite strategy,improving the global search scope in the early stage and the ability to refine the local development in the later stage.In the numerical study,the benchmark problem of dimensional optimization with a 10-bar truss structure and simultaneous dimensional shape optimization with a 15-bar truss structure is adopted,and the corresponding penalty method is used for constraint treatment.The test results show that the improved jellyfish search algorithm can provide better truss sections as well as weights.Because when the steel main truss of the large-span covered bridge is lifted,the site is limited and the large lifting equipment cannot enter the site,and the original structure does not meet the problem of stress concentration and large deformation of the bolt group,so the spreader is used to lift,and the improved jellyfish search algorithm is introduced into the design optimization of the spreader.The results show that the improved jellyfish algorithm can efficiently and accurately find out the optimal shape and weight of the spreader,and throughMidas Civil simulation,the spreader used canmeet the requirements of weight and safety. 展开更多
关键词 Truss optimization improved JSO size optimization shape optimization
下载PDF
A Subdivision-Based Combined Shape and Topology Optimization in Acoustics
18
作者 Chuang Lu Leilei Chen +1 位作者 Jinling Luo Haibo Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期847-872,共26页
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods... We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach. 展开更多
关键词 Subdivision surfaces boundary element method topology optimization shape optimization combined optimization
下载PDF
Multi-Stage Multidisciplinary Design Optimization Method for Enhancing Complete Artillery Internal Ballistic Firing Performance
19
作者 Jipeng Xie Guolai Yang +1 位作者 Liqun Wang Lei Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期793-819,共27页
To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the ... To enhance the comprehensive performance of artillery internal ballistics—encompassing power,accuracy,and service life—this study proposed a multi-stage multidisciplinary design optimization(MS-MDO)method.First,the comprehensive artillery internal ballistic dynamics(AIBD)model,based on propellant combustion,rotation band engraving,projectile axial motion,and rifling wear models,was established and validated.This model was systematically decomposed into subsystems from a system engineering perspective.The study then detailed the MS-MDO methodology,which included Stage I(MDO stage)employing an improved collaborative optimization method for consistent design variables,and Stage II(Performance Optimization)focusing on the independent optimization of local design variables and performance metrics.The methodology was applied to the AIBD problem.Results demonstrated that the MS-MDO method in Stage I effectively reduced iteration and evaluation counts,thereby accelerating system-level convergence.Meanwhile,Stage II optimization markedly enhanced overall performance.These comprehensive evaluation results affirmed the effectiveness of the MS-MDO method. 展开更多
关键词 ARTILLERY internal ballistics dynamics multi-stage optimization multi-disciplinary design optimization collaborative optimization
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
20
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部