After the single-strain abilities of organic-pollutant-degrading bacteria in bioremediation of sediment environment of shrimp culture are determined, the multi- strain degrading effect of the compositions of different...After the single-strain abilities of organic-pollutant-degrading bacteria in bioremediation of sediment environment of shrimp culture are determined, the multi- strain degrading effect of the compositions of different strains is measured. The results indicate that the multi-strains groups have higher degrading ability than the single -strain groups. Three-strain groups are better than two-strain groups, and four-strain groups are better than three-strain groups and five-strain groups, the groups composed of strains Lt7222, Lt7511, Fc6308 and Gy7018 has the best degrading effect, the CODMn removal rate is 73.2 % in 66 h, and gets to 82.7 % in 114 h, 30 % higher than that of the best single-strain group; Groups of Lt7222, Lt7511, Lt7451 and Gy7018 are the second, whose CODMn removal rate is 82.1 % in 114 h. It is suggested that multi-species bacteria be used as functional bacteria in bioremediation of mariculture environment.展开更多
Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magne...Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.展开更多
Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and t...Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization. Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by multiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=?1.68 (2.64 g/L), x3 (MgSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.展开更多
High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),...High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.展开更多
Water permeability can be used as a parameter to evaluate the effects of chitosan / nano-TiO2 composite film on the preservation of fruits and vegetables. In this study, using water permeability as the objective funct...Water permeability can be used as a parameter to evaluate the effects of chitosan / nano-TiO2 composite film on the preservation of fruits and vegetables. In this study, using water permeability as the objective function, an L9 (3)3 orthogonal experiment was conducted with addition amounts of chitosan, nano-TiO2 and glycerin as three factors at three levels. According to the experimental results, when the percentages of chitosan, nano-TiO2 and glycerin in chitosan / nano-TiO2 composite film was 2%, 0.03% and 2.5%, respectively ( i. e. , there were 2.0 g of chitosan, 0.03 g of nano-TiO2 and 2.5 g of glycerin per 1130 g composite film solution), the water permeability of chitesan / nano-TiO2 composite fdm reached the minimum. Chitosan / nano-TiO2 composite film prepared with the optimal composition was used for preservation of Jinqiu pear. The water loss rate, respiratory intensity and good fruit rate of preserved Jinqiu pear were determined, which indicated that the prepared chitosan / nano-TiO2 composite film exhibited good preservative effects.展开更多
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users...This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).展开更多
Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Arti...Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.展开更多
Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stocha...Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.展开更多
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s...Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.展开更多
This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of comp...This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of composition interval diagram (CID) with mathematical programming.The total cost target consists of the capital cost of the process units and the operating cost for mass separating agents (MS.As). The value of total cost varies considerablv with the composition differences, so the values of e should be optimized in order to obtain minimum TAC of a MEN. This articleconsiders ε as a set of unequal variables for each equilibrium equation of a rich-lean stream pair, employing them to build the CID and mathematical model, which optimizes the structure and composition differences simultaneously. Two examples are applied to illustrate the proposed method and the results demonstrate that the approach introduced by this article is simpler and more convenient than the methods in previous literatures.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the differ ent com...This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the differ ent components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast - furnace slag, high grade fly ash, silica fume etc..展开更多
A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling l...A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.展开更多
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ...This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.展开更多
A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The op...A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The optimal medium, composition (g·L^-1), containing sucrose 66.0, yeast powder 10.0, silkworm chrysalises digest 30.0, MgSO4· 7H2O 0.4, and KH2PO4 0.4, Was found using fractional factorial design ancl a central composite design, and the optimization of cultural conditions obtained a result of seed age 6 days, inoculum size 6% (by volume), initial pH 5.6, temperature 24℃, shaking speed 160 ·'min^-1 by one-factor-at-a-time method. The maximum biomass reached about 20.2 g·L^-1 after 90 hours culture under the optimal conditions. Elementary nharmaeclogical actlwtties showed that mycelia of C. ophioglossoides L2 from submerged culture promoted Uterus growth in estrogen- depleted mice. In the 15-litre scale-up fermentation, the mycelial biomass was around 19.1 g·L^-1, indicating a promising prospect for this biotechnoloagy and the potency to develoo its medical value.展开更多
Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly,...Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly, glycerol can generate environmental impact. One of the promises, the application of the crude glycerol is the production of citric acid by microbial fermentation. Citric acid is industrially produced by a submerged fermentation process with Aspergillus niger, using sucrose as carbon source, but due to increased demand for citric acid, alternative processes using renewable sources or waste materials as substrates and the cultivation of yeast strains are being studied. The aim of the study was to determine the best culture condition for maximum citric acid synthesis and lower isocitric acid production from crude glycerol through experimental design tool. For this purpose, the yeast strain Yarrowia lipolytica IMUFRJ-50682 was cultivated in nitrogen-limited glycerol-based media. Therefore, glycerol and yeast extract concentrations and agitation speed were evaluated as independent variables. With pure glycerol, the highest citric acid production achieved was 16.5 g/L with an isocitric acid production of 7.7% (in relation to citric acid). With crude glycerol, citric acid production reduced to 6.7 g/L because of higher biomass yield. Therefore, an increase in the initial carbon to nitrogen molar ratio from 714 to 1,561 was necessary to increase citric acid production to 9.2 g/L, reducing isocitric acid production and to achieve a yield of 0.41 g of citric acid per glycerol consumed. In this condition, less nitrogen source was used, reducing production costs.展开更多
This paper presents a new trust region algorithm for solving a class of composite nonsmooth optimizations. It is distinguished by the fact that this method does not enforce strict monotonicity of the objective functio...This paper presents a new trust region algorithm for solving a class of composite nonsmooth optimizations. It is distinguished by the fact that this method does not enforce strict monotonicity of the objective function values at successive iterates and that this method extends the existing results for this type of nonlinear optimization with smooth, or piecewise smooth, or convex objective functions or their composition. It is proved that this algorithm is globally convergent under certain conditions. Finally, some numerical results for several optimization problems are reported which show that the nonmonotonic trust region method is competitive with the usual trust region method.展开更多
In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-...In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.展开更多
In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s ...In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s alloys were studied systematically. To make component uniform and operation easy, uniform design (UD) method was introduced into the study of composition optimization of Co-free Fe-containing ABs-type alloys for the first time. X-ray diffraction (XRD) results showed that the designed alloys were of single CaCus-type structure phase. The replacement of Fe had a severe effect on electrochemical capacity, and the substitution of Fe and A1 had a synergetic action among the unit cell volume, cycling stability and high rate discharge property. Interestingly, it was found that the hydrogen storage alloys with excessively high plateau pressure showed a tilted line in Nyquist plot instead of the semicircle, and the current decayed rapidly to near zero at the beginning of the step in constant potential step (CPS), indicating that electrochemical impedance spectra (EIS) and CPS cannot accurately measure the electrochemical kinetics process of the hydrogen storage alloys with excessively high plateau pressure.展开更多
基金The paper is supported by the national high-technology development project (819-02-07) and the project of NSFC (30200209).
文摘After the single-strain abilities of organic-pollutant-degrading bacteria in bioremediation of sediment environment of shrimp culture are determined, the multi- strain degrading effect of the compositions of different strains is measured. The results indicate that the multi-strains groups have higher degrading ability than the single -strain groups. Three-strain groups are better than two-strain groups, and four-strain groups are better than three-strain groups and five-strain groups, the groups composed of strains Lt7222, Lt7511, Fc6308 and Gy7018 has the best degrading effect, the CODMn removal rate is 73.2 % in 66 h, and gets to 82.7 % in 114 h, 30 % higher than that of the best single-strain group; Groups of Lt7222, Lt7511, Lt7451 and Gy7018 are the second, whose CODMn removal rate is 82.1 % in 114 h. It is suggested that multi-species bacteria be used as functional bacteria in bioremediation of mariculture environment.
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金supported by the financial support from Natural Science Foundation of China(21776053 and 21676065)。
文摘Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
基金Project (No. 2004C32049) supported by the Science and Technology Department of Zhejiang Province, China
文摘Objective: To study the optimal medium composition for xylanase production by Aspergillus niger XY-1 in solid-state fermentation (SSF). Methods: Statistical methodology including the Plackett-Burman design (PBD) and the central composite design (CCD) was employed to investigate the individual crucial component of the medium that significantly affected the enzyme yield. Results: Firstly, NaNO3, yeast extract, urea, Na2CO3, MgSO4, peptone and (NH4)2SO4 were screened as the significant factors positively affecting the xylanase production by PBD. Secondly, by valuating the nitrogen sources effect, urea was proved to be the most effective and economic nitrogen source for xylanase production and used for further optimization. Finally, the CCD and response surface methodology (RSM) were applied to determine the optimal concentration of each sig-nificant variable, which included urea, Na2CO3 and MgSO4. Subsequently a second-order polynomial was determined by multiple regression analysis. The optimum values of the critical components for maximum xylanase production were obtained as follows: x1 (urea)=0.163 (41.63 g/L), x2 (Na2CO3)=?1.68 (2.64 g/L), x3 (MgSO4)=1.338 (10.68 g/L) and the predicted xylanase value was 14374.6 U/g dry substrate. Using the optimized condition, xylanase production by Aspergillus niger XY-1 after 48 h fermentation reached 14637 U/g dry substrate with wheat bran in the shake flask. Conclusion: By using PBD and CCD, we obtained the optimal composition for xylanase production by Aspergillus niger XY-1 in SSF, and the results of no additional expensive medium and shortened fermentation time for higher xylanase production show the potential for industrial utilization.
基金the funding support from the National Natural Science Foundation of China (Nos. 51804221, 51874101)the National Key R&D Program of China (No. 2019YFF0217102)the China Postdoctoral Science Foundation (Nos. 2018M642906, 2019T120684)
文摘High-efficiency recovery of Zn and Pb from silicon-rich zinc leaching residues is realized in a rotary kiln.Characterizations by means of XRD,SEM,EDS and ICP reveal that the leaching residue contains 12.4 wt.%SiO_(2),16.1 wt.%Zn,and 7.4 wt.%Pb.Thermodynamic analysis shows that metallic vapor of Zn and Pb can be easily generated from the zinc leaching residue at 1150-1250°C inside the rotary kiln.Viscosities and melting points of 13 slag compositions were analyzed and three slag compositions(47wt.%SiO_(2)-23wt.%CaO-30wt.%FeO,40wt.%SiO_(2)-28wt.%CaO-32wt.%FeO,and 40wt.%SiO_(2)-30wt.%CaO-30wt.%FeO)possessed the desirable physical properties,with the melting point and viscosity in the range of 1150-1280°C and 0.2-0.5 Pa·s,respectively.The industrial tests show that adopting the optimized slag composition can contribute to very high recovery rates of Zn and Pb(97.3%for Zn and 94.5%for Pb),corresponding to slags with very low average contents of Zn and Pb(0.51 wt.%Zn and 0.45 wt.%Pb).The National-Standard leaching tests of the water-quenched slags result in 1.82 mg/L Zn,~0.01 mg/L Cu,0.0004 mg/L As,~0.01 mg/L Cd,0.08 mg/L Pb,and~0.02 mg/L Hg in the leachate,verifying the detoxification of the zinc leaching residue at the same time.
基金Supported by Science and Technology Fund of Guizhou Province[QKHJZ(2012)2179]
文摘Water permeability can be used as a parameter to evaluate the effects of chitosan / nano-TiO2 composite film on the preservation of fruits and vegetables. In this study, using water permeability as the objective function, an L9 (3)3 orthogonal experiment was conducted with addition amounts of chitosan, nano-TiO2 and glycerin as three factors at three levels. According to the experimental results, when the percentages of chitosan, nano-TiO2 and glycerin in chitosan / nano-TiO2 composite film was 2%, 0.03% and 2.5%, respectively ( i. e. , there were 2.0 g of chitosan, 0.03 g of nano-TiO2 and 2.5 g of glycerin per 1130 g composite film solution), the water permeability of chitesan / nano-TiO2 composite fdm reached the minimum. Chitosan / nano-TiO2 composite film prepared with the optimal composition was used for preservation of Jinqiu pear. The water loss rate, respiratory intensity and good fruit rate of preserved Jinqiu pear were determined, which indicated that the prepared chitosan / nano-TiO2 composite film exhibited good preservative effects.
基金supported by the National Natural Science Foundation of China(61573283)
文摘This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA).
基金supported by a grant from the Project "Multifunctional mobile phone R & D and industrialization of the Internet of things" supported by the Project of the Provincial Department of research (2011A090200008)partly supported by National Science and Technology Major Project (No. 2010ZX07102-006)+3 种基金the National Basic Research Program of China (973 Program) (No. 2011CB505402)the Major Program of the National Natural Science Foundation of China (No. 61170117)the National Natural Science Foundation of China (No.61432004)the National Key Research and Development Program (No.2016YFB1001404)
文摘Internet of things(IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services. A cross-modified Artificial Bee Colony Algorithm(CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy. Firstly, web service instantiation model was established. What is more, to overcome the problem of discrete and chaotic solution space, the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm(GA). The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.
文摘Proximal gradient descent and its accelerated version are resultful methods for solving the sum of smooth and non-smooth problems. When the smooth function can be represented as a sum of multiple functions, the stochastic proximal gradient method performs well. However, research on its accelerated version remains unclear. This paper proposes a proximal stochastic accelerated gradient (PSAG) method to address problems involving a combination of smooth and non-smooth components, where the smooth part corresponds to the average of multiple block sums. Simultaneously, most of convergence analyses hold in expectation. To this end, under some mind conditions, we present an almost sure convergence of unbiased gradient estimation in the non-smooth setting. Moreover, we establish that the minimum of the squared gradient mapping norm arbitrarily converges to zero with probability one.
文摘Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces.
文摘This article presents a new method to calculate the composition differences (e) for tar g.etin.g the minimum total annualized cost (TAC) of a mass exchange network (MEN),which is based on the combination of composition interval diagram (CID) with mathematical programming.The total cost target consists of the capital cost of the process units and the operating cost for mass separating agents (MS.As). The value of total cost varies considerablv with the composition differences, so the values of e should be optimized in order to obtain minimum TAC of a MEN. This articleconsiders ε as a set of unequal variables for each equilibrium equation of a rich-lean stream pair, employing them to build the CID and mathematical model, which optimizes the structure and composition differences simultaneously. Two examples are applied to illustrate the proposed method and the results demonstrate that the approach introduced by this article is simpler and more convenient than the methods in previous literatures.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
文摘This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the differ ent components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast - furnace slag, high grade fly ash, silica fume etc..
基金Innovation Team Development Program of Ministry of Education of China (No. IRT0763)National Natural Science Foundation of China (No. 50205028).
文摘A new optimization method for the optimization of stacking of composite glass fiber laminates is developed. The fiber orientation and angle of the layers of the cylindrical shells are sought considering the buckling load. The proposed optimization algorithm applies both finite element analysis and the mode-pursuing sampling (MPS)method. The algorithms suggest the optimal stacking sequence for achieving the maximal buckling load. The procedure is implemented by integrating ANSYS and MATLAB. The stacking sequence designing for the symmetric angle-ply three-layered and five-layered composite cylinder shells is presented to illustrate the optimization process, respectively. Compared with the genetic algorithms, the proposed optimization method is much faster and efficient for composite staking sequence plan.
基金financial support for this research was provided by the Program (Grants 11372060, 91216201) of the National Natural Science Foundation of ChinaProgram (LJQ2015026 ) for Excellent Talents at Colleges and Universities in Liaoning Province+3 种基金the Major National Science and Technology Project (2011ZX02403-002)111 project (B14013)Fundamental Research Funds for the Central Universities (DUT14LK30)the China Scholarship Fund
文摘This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.
基金Supported by the Research Project of Science and Technology of Zhejiang Province, China (2005C23027), the National High Technology Research and Development Program of China (2007AA021506) and the Natural Science Foundation of Zhejiang Province (R207609). We would like to thank Dr. Birnie from New Zealand for his editing of this manuscript.
文摘A strain isolated from the fruiting body of a fungus parasitized on Elaphomyces was identified as Cordyceps ophioglossoides based on the morphological characteristics and the analysis of ITS-5.8s rDNA sequence. The optimal medium, composition (g·L^-1), containing sucrose 66.0, yeast powder 10.0, silkworm chrysalises digest 30.0, MgSO4· 7H2O 0.4, and KH2PO4 0.4, Was found using fractional factorial design ancl a central composite design, and the optimization of cultural conditions obtained a result of seed age 6 days, inoculum size 6% (by volume), initial pH 5.6, temperature 24℃, shaking speed 160 ·'min^-1 by one-factor-at-a-time method. The maximum biomass reached about 20.2 g·L^-1 after 90 hours culture under the optimal conditions. Elementary nharmaeclogical actlwtties showed that mycelia of C. ophioglossoides L2 from submerged culture promoted Uterus growth in estrogen- depleted mice. In the 15-litre scale-up fermentation, the mycelial biomass was around 19.1 g·L^-1, indicating a promising prospect for this biotechnoloagy and the potency to develoo its medical value.
文摘Due to the scarcity of fossil fuels in the world, there is increasing interest in the commercial production of biodiesel, which leads to obtaining large amounts of glycerol as a byproduct. If not disposed of properly, glycerol can generate environmental impact. One of the promises, the application of the crude glycerol is the production of citric acid by microbial fermentation. Citric acid is industrially produced by a submerged fermentation process with Aspergillus niger, using sucrose as carbon source, but due to increased demand for citric acid, alternative processes using renewable sources or waste materials as substrates and the cultivation of yeast strains are being studied. The aim of the study was to determine the best culture condition for maximum citric acid synthesis and lower isocitric acid production from crude glycerol through experimental design tool. For this purpose, the yeast strain Yarrowia lipolytica IMUFRJ-50682 was cultivated in nitrogen-limited glycerol-based media. Therefore, glycerol and yeast extract concentrations and agitation speed were evaluated as independent variables. With pure glycerol, the highest citric acid production achieved was 16.5 g/L with an isocitric acid production of 7.7% (in relation to citric acid). With crude glycerol, citric acid production reduced to 6.7 g/L because of higher biomass yield. Therefore, an increase in the initial carbon to nitrogen molar ratio from 714 to 1,561 was necessary to increase citric acid production to 9.2 g/L, reducing isocitric acid production and to achieve a yield of 0.41 g of citric acid per glycerol consumed. In this condition, less nitrogen source was used, reducing production costs.
文摘This paper presents a new trust region algorithm for solving a class of composite nonsmooth optimizations. It is distinguished by the fact that this method does not enforce strict monotonicity of the objective function values at successive iterates and that this method extends the existing results for this type of nonlinear optimization with smooth, or piecewise smooth, or convex objective functions or their composition. It is proved that this algorithm is globally convergent under certain conditions. Finally, some numerical results for several optimization problems are reported which show that the nonmonotonic trust region method is competitive with the usual trust region method.
基金Supported by the National Natural Science Foundation of China(62272214)。
文摘In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition.
基金Project supported by the Guangdong-Ministry of Education (GD-MOE) Coordination Project of Industry Academic and Research (2008B090500274)Chengdu Key Technologies R&D Program (10GGYB897GX-023)
文摘In order to reduce the cost of ABs-type hydrogen storage alloys, effects of substitution of Ce for La (A side) and Fe, Mn, Al for Ni (B side) on structural and electrochemical properties of (LaCe);(NiFeMnAl)s alloys were studied systematically. To make component uniform and operation easy, uniform design (UD) method was introduced into the study of composition optimization of Co-free Fe-containing ABs-type alloys for the first time. X-ray diffraction (XRD) results showed that the designed alloys were of single CaCus-type structure phase. The replacement of Fe had a severe effect on electrochemical capacity, and the substitution of Fe and A1 had a synergetic action among the unit cell volume, cycling stability and high rate discharge property. Interestingly, it was found that the hydrogen storage alloys with excessively high plateau pressure showed a tilted line in Nyquist plot instead of the semicircle, and the current decayed rapidly to near zero at the beginning of the step in constant potential step (CPS), indicating that electrochemical impedance spectra (EIS) and CPS cannot accurately measure the electrochemical kinetics process of the hydrogen storage alloys with excessively high plateau pressure.