期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Smart manufacturing of nonferrous metallurgical processes:Review and perspectives 被引量:4
1
作者 Bei Sun Juntao Dai +2 位作者 Keke Huang Chunhua Yang Weihua Gui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期611-625,共15页
The nonferrous metallurgical(NFM)industry is a cornerstone industry for a nation’s economy.With the development of artificial technologies and high requirements on environment protection,product quality,and productio... The nonferrous metallurgical(NFM)industry is a cornerstone industry for a nation’s economy.With the development of artificial technologies and high requirements on environment protection,product quality,and production efficiency,the importance of applying smart manufacturing technologies to comprehensively percept production states and intelligently optimize process operations is becoming widely recognized by the industry.As a brief summary of the smart and optimal manufacturing of the NFM industry,this paper first reviews the research progress on some key facets of the operational optimization of NFM processes,including production and management,blending optimization,modeling,process monitoring,optimization,and control.Then,it illustrates the perspectives of smart and optimal manufacturing of the NFM industry.Finally,it discusses the major research directions and challenges of smart and optimal manufacturing for the NFM industry.This paper will lay a foundation for the realization of smart and optimal manufacturing in nonferrous metallurgy in the future. 展开更多
关键词 nonferrous metallurgical industry smart and optimal manufacturing online perception intelligent control operational optimiza-tion automation of knowledge-based work
下载PDF
Scheduling optimization of task allocation in integrated manufacturing system based on task decomposition 被引量:10
2
作者 Aijun Liu Michele Pfund John Fowler 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期422-433,共12页
How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we ca... How to deal with the collaboration between task decomposition and task scheduling is the key problem of the integrated manufacturing system for complex products. With the development of manufacturing technology, we can probe a new way to solve this problem. Firstly, a new method for task granularity quantitative analysis is put forward, which can precisely evaluate the task granularity of complex product cooperation workflow in the integrated manufacturing system, on the above basis; this method is used to guide the coarse-grained task decomposition and recombine the subtasks with low cohesion coefficient. Then, a multi-objective optimieation model and an algorithm are set up for the scheduling optimization of task scheduling. Finally, the application feasibility of the model and algorithm is ultimately validated through an application case study. 展开更多
关键词 integrated manufacturing system optimization task decomposition task scheduling
下载PDF
CONCURRENT PRODUCT PORTFOLIO PLANNING AND MIXED PRODUCT ASSEMBLY LINE BALANCING
3
作者 BRYAN April HU S Jack KOREN Yoram 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期96-99,共4页
Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to... Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design. 展开更多
关键词 Product portfolio Assembly system design Assembly line balancing Concurrent design and manufacturing Optimization
下载PDF
Stiffeners layout design of thin-walled structures with constraints on multi-fastener joint loads 被引量:6
4
作者 Jie HOU Jihong ZHU +2 位作者 Fei HE Weihong ZHANG Wenjie GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1441-1450,共10页
The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are consider... The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level. 展开更多
关键词 Joint load constraint Manufacturing constraint Stiffeners Thin-walled structures Topology optimization
原文传递
Special issue: Operations analytics and optimization for manufacturing, logistics and energy systems
5
作者 Jiming WANG Jie LIU +1 位作者 Anlin SHAO Lixin TANG 《Frontiers of Engineering Management》 2017年第3期239-241,共3页
Practical manufacturing,logistics and energy systems are confronted with the problems of high energy consumption,tremendous production and logistics costs,and excessive resource consumption.To meet
关键词 Operations analytics and optimization for manufacturing Special issue logistics and energy systems CPS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部