Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ...Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.展开更多
To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi...To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic...Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.展开更多
In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was perfor...In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was performed in terms of BPA degradation performance.The experimental results demonstrated that nearly 90%of BPA(20 mg l^(-1))in the synthetic wastewater(p H=7.5,σ=10μS m^(-1))was degraded by the plasma catalytic system over 0.2 g l^(-1)graphene/Cd S at 19k V with a 4 l min^(-1)air flow rate and 10 mm electrode gap within 60 min.The BPA removal rate increased with increasing the discharge voltage and decreasing the initial BPA concentration or solution conductivity.Nevertheless,either too high or too low an air flow rate,electrode gap,catalyst dosage or initial solution p H would lead to a decrease in BPA degradation.Moreover,optical emission spectroscopy was used to gain information on short-lived reactive species formed from the pulsed gas–liquid hybrid discharge plasma system.The results indicated the existence of several highly oxidative free radicals such as·O and·OH.Finally,the activation pathway of O_(3)on the catalyst surface was analyzed by density functional theory.展开更多
Soil classification is one of the emanating topics and major concerns in many countries.As the population has been increasing at a rapid pace,the demand for food also increases dynamically.Common approaches used by ag...Soil classification is one of the emanating topics and major concerns in many countries.As the population has been increasing at a rapid pace,the demand for food also increases dynamically.Common approaches used by agriculturalists are inadequate to satisfy the rising demand,and thus they have hindered soil cultivation.There comes a demand for computer-related soil classification methods to support agriculturalists.This study introduces a Gradient-Based Optimizer and Deep Learning(DL)for Automated Soil Clas-sification(GBODL-ASC)technique.The presented GBODL-ASC technique identifies various kinds of soil using DL and computer vision approaches.In the presented GBODL-ASC technique,three major processes are involved.At the initial stage,the presented GBODL-ASC technique applies the GBO algorithm with the EfficientNet prototype to generate feature vectors.For soil categorization,the GBODL-ASC procedure uses an arithmetic optimization algorithm(AOA)with a Back Propagation Neural Network(BPNN)model.The design of GBO and AOA algorithms assist in the proper selection of parameter values for the EfficientNet and BPNN models,respectively.To demonstrate the significant soil classification outcomes of the GBODL-ASC methodology,a wide-ranging simulation analysis is performed on a soil dataset comprising 156 images and five classes.The simulation values show the betterment of the GBODL-ASC model through other models with maximum precision of 95.64%.展开更多
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a...CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.展开更多
The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method.For this purpose,a numerical study of the related...The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method.For this purpose,a numerical study of the related flow field is performed using CFX.The shaft power and the head of the pump are taken as the evaluation indicators.Accordingly,the examined variables are the thickness(S),the blade cascade degree(t),the blade rim angle(β1),the blade hub angle(β2)and the hub length(L).The impact of each structural parameter on each evaluation index is examined and special attention is paid to the following combinations:S2 mm,t 2,β1235°,β2360°and L 140 mm(corresponding to a maximum head of 98.15 m);S 5 mm,t 1.6,β1252°,β2350°and L 140 mm(corresponding to a minimum shaft power of 63.06 KW).Moreover,using least squares and fish swarm algorithms,the pump shaft power and head are further optimized,yielding the following optimal combination:S 5 mm,t 1.9,β1252°,β2360°and L 145 mm(corresponding to the maximum head of 91.90 m,and a minimum shaft power of 64.83 KW).展开更多
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af...The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.展开更多
Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the ...Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mi...Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important展开更多
With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBS...With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.展开更多
The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tok...The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.展开更多
The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the hum...The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.展开更多
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr...A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were ob...An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.展开更多
The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performa...The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.展开更多
Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using ...Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.展开更多
基金This study was funded by the Xinjiang Production and Construction Corps Southern Xinjiang Key Industry Support Program Project,Grant Number 2019DB007.
文摘Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.
文摘To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
基金Supported by National Natural Science Foundation of China(Grant Nos.51965006 and 51875209)Guangxi Natural Science Foundation of China(Grant No.2018GXNSFAA050111)+1 种基金Innovation Project of Guangxi Graduate Education of China(Grant No.YCSW2019035)Open Fund of National Engineering Research Center of Near-Shape Forming for Metallic Materials of China(Grant No.2019001).
文摘Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed.
基金supported by the Open Fund for State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution(No.GHBK-2020-006)National Natural Science Foundation of China(No.21876070)。
文摘In the present work,pulsed gas–liquid hybrid discharge plasma coupled with graphene/Cd S catalyst was evaluated to eliminate bisphenol A(BPA)in wastewater.The optimization of a series of process parameters was performed in terms of BPA degradation performance.The experimental results demonstrated that nearly 90%of BPA(20 mg l^(-1))in the synthetic wastewater(p H=7.5,σ=10μS m^(-1))was degraded by the plasma catalytic system over 0.2 g l^(-1)graphene/Cd S at 19k V with a 4 l min^(-1)air flow rate and 10 mm electrode gap within 60 min.The BPA removal rate increased with increasing the discharge voltage and decreasing the initial BPA concentration or solution conductivity.Nevertheless,either too high or too low an air flow rate,electrode gap,catalyst dosage or initial solution p H would lead to a decrease in BPA degradation.Moreover,optical emission spectroscopy was used to gain information on short-lived reactive species formed from the pulsed gas–liquid hybrid discharge plasma system.The results indicated the existence of several highly oxidative free radicals such as·O and·OH.Finally,the activation pathway of O_(3)on the catalyst surface was analyzed by density functional theory.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R303)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.Research Supporting Project number(RSPD2023R787)+1 种基金King Saud University,Riyadh,Saudi ArabiaThis study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Soil classification is one of the emanating topics and major concerns in many countries.As the population has been increasing at a rapid pace,the demand for food also increases dynamically.Common approaches used by agriculturalists are inadequate to satisfy the rising demand,and thus they have hindered soil cultivation.There comes a demand for computer-related soil classification methods to support agriculturalists.This study introduces a Gradient-Based Optimizer and Deep Learning(DL)for Automated Soil Clas-sification(GBODL-ASC)technique.The presented GBODL-ASC technique identifies various kinds of soil using DL and computer vision approaches.In the presented GBODL-ASC technique,three major processes are involved.At the initial stage,the presented GBODL-ASC technique applies the GBO algorithm with the EfficientNet prototype to generate feature vectors.For soil categorization,the GBODL-ASC procedure uses an arithmetic optimization algorithm(AOA)with a Back Propagation Neural Network(BPNN)model.The design of GBO and AOA algorithms assist in the proper selection of parameter values for the EfficientNet and BPNN models,respectively.To demonstrate the significant soil classification outcomes of the GBODL-ASC methodology,a wide-ranging simulation analysis is performed on a soil dataset comprising 156 images and five classes.The simulation values show the betterment of the GBODL-ASC model through other models with maximum precision of 95.64%.
基金support from the National Natural Science Foundation of China(No.51904324,No.51974348)the Prospective Basic Major Science and Technology Projects for the 14th Five Year Plan(No.2021DJ2202).
文摘CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.
基金project of the“The University Synergy Innovation Program of Anhui Province(GXXT-2019-004)”,“Natural Science Research Project of Anhui Universities(KJ2021ZD0144)”,“Wuhu Key R&D Project:Research and Industrialization of Intelligent Control Method of Engine Energy-Feeding Hydraulic Semi-Active Mount”.
文摘The aim of the study is to determine the optimal structural parameters for a plastic centrifugal pump inducer within the framework of an orthogonal experimental method.For this purpose,a numerical study of the related flow field is performed using CFX.The shaft power and the head of the pump are taken as the evaluation indicators.Accordingly,the examined variables are the thickness(S),the blade cascade degree(t),the blade rim angle(β1),the blade hub angle(β2)and the hub length(L).The impact of each structural parameter on each evaluation index is examined and special attention is paid to the following combinations:S2 mm,t 2,β1235°,β2360°and L 140 mm(corresponding to a maximum head of 98.15 m);S 5 mm,t 1.6,β1252°,β2350°and L 140 mm(corresponding to a minimum shaft power of 63.06 KW).Moreover,using least squares and fish swarm algorithms,the pump shaft power and head are further optimized,yielding the following optimal combination:S 5 mm,t 1.9,β1252°,β2360°and L 145 mm(corresponding to the maximum head of 91.90 m,and a minimum shaft power of 64.83 KW).
基金Project was supported by National Natural Science Foundation of China(Grant No.62173170).
文摘The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process.
文摘Lunar surface additive manufacturing with lunar regolith is a key step in in-situ resource utilization.The powder spreading process is the key process,which has a major impact on the quality of the powder bed and the precision of molded parts.In this study,the discrete element method(DEM)was adopted to simulate the powder spreading process with a roller.The three powder bed quality indicators,including the molding layer offset,voidage fraction,and surface roughness,were established.Besides,the influence of the three process parameters,which are roller’s translational speed,rotational speed,and powder spreading layer thickness on the powder bed quality indicators was also analyzed.The results show that with the reduction of the powder spreading layer thickness and the increase of the rotational speed,the offset increased significantly;when the translational speed increased,the offset first increased and then decreased,which resulted in an extreme value;with the increase of the layer thickness and the decrease of the translational speed,the values for voidage fraction and surface roughness significantly reduced.The powder bed quality indicators were adopted as the optimization objective,and the multi-objective parameter optimization was carried out.The predicted optimal powder spreading parameters and powder bed quality indicators were then obtained.Moreover,the optimal values were then verified.This study can provide informative guidance for in-situ manufacturing at the moon in future deep space exploration missions.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘Aim To obtain an optimizing range of the main configuration parameters of double swirls combustion system (DSCS) Methods To analyze the influence of DS combustion cham-ber configuration parameters on fuel spray and mixing by means of the fuel jet developmentperiphery charts obtained by the high speed photography with a modeling test device deve-loped by authors,and to examine it by the tests on a single cylinder diesel engine.Resultsand Conclusion The mixing process can be divided into four phases.The optimizing range of the ration of the inner chamber diameter to the cylinder bore,d2/D,is 0.4-0.7; and the outerchamber diameter,d1 the height of the circular ridge to the piston top face,h1,the radius of outer/inner chamber circle,R1,R2 ,the max depth of outer/inner chamber bowl,H1,H2,etc. are also important
基金Project (192450/I30) supported by the Norwegian Research Council under the Strategic University Program
文摘With the help of FESEM, high resolution electron backscatter diffraction can investigate the grains/subgrains as small as a few tens of nanometers with a good angular resolution (~0.5°). Fast development of EBSD speed (up to 1100 patterns per second) contributes that the number of published articles related to EBSD has been increasing sharply year by year. This paper reviews the sample preparation, parameters optimization and analysis of EBSD technique, emphasizing on the investigation of ultrafine grained and nanostructured materials processed by severe plastic deformation (SPD). Detailed and practical parameters of the electropolishing, silica polishing and ion milling have been summarized. It is shown that ion milling is a real universal and promising polishing method for EBSD preparation of almost all materials. There exists a maximum value of indexed points as a function of step size. The optimum step size depends on the magnification and the board resolution/electronic step size. Grains/subgrains and texture, and grain boundary structure are readily obtained by EBSD. Strain and stored energy may be analyzed by EBSD.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100004 and 2022YFE03060003)National Natural Science Foundation of China(Nos.12375226,12175227 and 11875255)the China Postdoctoral Science Foundation(No.2022M723066).
文摘The trajectory of the compact torus(CT)within a tokamak discharge is crucial to fueling.In this study,we developed a penetration model with a vacuum magnetic field region to accurately determine CT trajectories in tokamak discharges.This model was used to calculate the trajectory and penetration parameters of CT injections by applying both perpendicular and tangential injection schemes in both HL-2A and ITER tokamaks.For perpendicular injection along the tokamak's major radius direction from the outboard,CTs with the same injection parameters exhibited a 0.08 reduction in relative penetration depth when injected into HL-2A and a 0.13reduction when injected into ITER geometry when considering the vacuum magnetic field region compared with cases where this region was not considered.In addition,we proposed an optimization method for determining the CT's initial injection velocity to accurately calculate the initial injection velocity of CTs for central fueling in tokamaks.Furthermore,this paper discusses schemes for the tangential injection of CT into tokamak discharges.The optimal injection angle and CT magnetic moment direction for injection into both HL-2A and ITER were determined through numerical simulations.Finally,the kinetic energy loss occurring when the CT penetrated the vacuum magnetic field region in ITER was reduced byΔEk=975.08 J by optimizing the injection angle for the CT injected into ITER.These results provide valuable insights for optimizing injection angles in fusion experiments.Our model closely represents actual experimental scenarios and can assist the design of CT parameters.
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant Nos.20281805Z,E2020103001)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘The kinematic equivalent model of an existing ankle-rehabilitation robot is inconsistent with the anatomical structure of the human ankle,which influences the rehabilitation effect.Therefore,this study equates the human ankle to the UR model and proposes a novel three degrees of freedom(3-DOF)generalized spherical parallel mechanism for ankle rehabilitation.The parallel mechanism has two spherical centers corresponding to the rotation centers of tibiotalar and subtalar joints.Using screw theory,the mobility of the parallel mechanism,which meets the requirements of the human ankle,is analyzed.The inverse kinematics are presented,and singularities are identified based on the Jacobian matrix.The workspaces of the parallel mechanism are obtained through the search method and compared with the motion range of the human ankle,which shows that the parallel mechanism can meet the motion demand of ankle rehabilitation.Additionally,based on the motion-force transmissibility,the performance atlases are plotted in the parameter optimal design space,and the optimum parameter is obtained according to the demands of practical applications.The results show that the parallel mechanism can meet the motion requirements of ankle rehabilitation and has excellent kinematic performance in its rehabilitation range,which provides a theoretical basis for the prototype design and experimental verification.
基金National Key Laboratory of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2022-4)to provide fund for conducting experiments。
文摘A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
文摘An optimization method of fracturing fluid volume strength was introduced taking well X-1 in Biyang Sag of Nanxiang Basin as an example.The characteristic curves of capillary pressure and relative permeability were obtained from history matching between forced imbibition experimental data and core-scale reservoir simulation results and taken into a large scale reservoir model to mimic the forced imbibition behavior during the well shut-in period after fracturing.The optimization of the stimulated reservoir volume(SRV)fracturing fluid volume strength should meet the requirements of estimated ultimate recovery(EUR),increased oil recovery by forced imbibition and enhancement of formation pressure and the fluid volume strength of fracturing fluid should be controlled around a critical value to avoid either insufficiency of imbibition displacement caused by insufficient fluid amount or increase of costs and potential formation damage caused by excessive fluid amount.Reservoir simulation results showed that SRV fracturing fluid volume strength positively correlated with single-well EUR and an optimal fluid volume strength existed,above which the single-well EUR increase rate kept decreasing.An optimized increase of SRV fracturing fluid volume and shut-in time would effectively increase the formation pressure and enhance well production.Field test results of well X-1 proved the practicality of established optimization method of SRV fracturing fluid volume strength on significant enhancement of shale oil well production.
基金funding of the National Natural Science Foundation of China (Nos.52072156,51605198)Postdoctoral Foundation of China (2020M682269).
文摘The wheels have a considerable influence on the aerodynamic properties and can contribute up to 25%of the total drag on modern vehicles.In this study,the effect of the wheel spoke structure on the aerodynamic performance of the isolated wheel is investigated.Subsequently,the 35°Ahmed body with an optimized spoke structure is used to analyze the flow behavior and the mechanism of drag reduction.The Fluent software is employed for this investigation,with an inlet velocity of 40 m/s.The accuracy of the numerical study is validated by comparing it with experimental results obtained from the classical Ahmed model.To gain a clearer understanding of the effects of the wheel spoke parameters on the aerodynamics of both the wheel and Ahmedmodel,and five design variables are proposed:the fillet angleα,the inside arc radius R1,the outside radius R2,and the same length of the chord L1 and L2.These variables characterize the wheel spoke structure.The Optimal Latin Hypercube designmethod is utilized to conduct the experimental design.Based on the simulation results of various wheel spoke designs,the Kriging model and the adaptive simulated annealing algorithm is selected to optimize the design parameters.The objective is to achieve the best combination for maximum drag reduction.It is indicated that the optimized spoke structure resulted in amaximum drag reduction of 5.7%and 4.7%for the drag coefficient of the isolated wheel and Ahmed body,respectively.The drag reduction is primarily attributed to changes in the flow state around the wheel,which suppressed separation bubbles.Additionally,it influenced the boundary layer thickness around the car body and reduced the turbulent kinetic energy in the wake flow.These effects collectively contributed to the observed drag reduction.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)and the Ministry of Trade,Industry&Energy,Republic of Korea (RS-2024-00441420RS-2024-00442817).
文摘Dynamic impacts such as wind and earthquakes cause loss of life and economic damage.To ensure safety against these effects,various measures have been taken from past to present and solutions have been developed using different technologies.Tall buildings are more susceptible to vibrations such as wind and earthquakes.Therefore,vibration control has become an important issue in civil engineering.This study optimizes tuned mass damper inerter(TMDI)using far-fault ground motion records.This study derives the optimum parameters of TMDI using the Adaptive Harmony Search algorithm.Structure displacement and total acceleration against earthquake load are analyzed to assess the performance of the TMDI system.The effect of the inerter when connected to different floors is observed,and the results are compared to the conventional tuned mass damper(TMD).It is indicated that the case of connecting the inerter force to the 5th floor gives better results.As a result,TMD and TMDI systems reduce the displacement by 21.87%and 25.45%,respectively,and the total acceleration by 25.45%and 19.59%,respectively.These percentage reductions indicated that the structure resilience against dynamic loads can be increased using control systems.