This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of ...This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of the methods were taken from G-Suite functions, and the methods with the best performance were applied in mass integration problems. Four methods were proposed:(1) flexible tolerance method(FTM) using adaptive parameters(FTMA),(2) flexible tolerance method with scaling(FTMS) and with adaptive parameters(FTMAS),(3) FTMS including the barrier modification(MFTMS) and(4) MFTMS hybridized with PSO(MFTMS-PSO). The success rates of these methods were 100%(MFTMS), 85%(MFTMS-PSO), 40%(FTMAS) and 30%(FTMA).Numerical experiments indicated that the MFTMS could efficiently and reliably improve the accuracy of global optima. In mass integration, the method was able, from current process situation, to reach the optimum process configuration that includes integration issues, which was not possible using FTM in its standard formulation. The hybridization of FTMS with PSO(without barrier), FTMS-PSO, was also able to solve mass integration problems efficiently.展开更多
In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is a...In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear ...A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation.By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional av- eraged It stochastic differential equation.By using the stochastic dynamical programming princi- ple the dynamical programming equation for minimizing the response of the system is formulated. The optimal control law is derived from the dynamical programming equation and the bounded control constraints.The response of optimally controlled systems is predicted through solving the FPK equation associated with It stochastic differential equation.An example is worked out in detail to illustrate the application of the control strategy proposed.展开更多
Current machining studies have reported effects of prevalent and common factors,while ultra⁃high finish requires holistic approach to identify all factors and investigate their effects on machining of hard to machine ...Current machining studies have reported effects of prevalent and common factors,while ultra⁃high finish requires holistic approach to identify all factors and investigate their effects on machining of hard to machine materials.In this work,a less investigated yet important factor,roughness of the uncut surface,was studied,and its effects on the individual response,i.e.,surface finish of the machined part,were found to be significant.AISI 316,which is mainly applied in strategic areas,was selected and three effective turning factors,cutting speed(A),feed rate(B),and roughness of the uncut surface(C)on three output responses including surface roughness of the machined surface(Ra),microhardness(HV),and material removal rate(MRR),were reported.Further,single response optimization of the individual output response and multi⁃response optimization of all the three responses were carried out.Taguchi L9 orthogonal array based signal⁃to⁃noise(S/N)ratio method was used for individual response optimization,and grey relational analysis(GRA)was employed for multi⁃response optimization.Effects of the process factors on the output responses were evaluated through inclusive statistical analyses.The individual response optimization revealed that there was a considerable effect of roughness of the uncut surface on the machining performance.Results of the GRA illustrated that the speed during the cutting process and the feed rate had substantial trace on the surface integrity(indicated by Ra and HV)and production rate(indicated by MRR),while roughness of the uncut surface did not have a significant effect.展开更多
The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design o...The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design of the inner frame shape of a three-axis test table. The result shows that the method converges well, and the system is stable and reliable.展开更多
Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distributi...Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distribution of stimulated reservoir volume,the complex hydraulic fracture morphology was accurately described using heterogeneous node connection system.Then a new fracture connection element method(FCEM)for fluid flow in stimulated unconventional reservoirs with complex hydraulic fracture morphology was proposed.In the proposed FCEM,the arrangement of dense nodes in the stimulated area and sparse nodes in the unstimulated area ensures the calculation accuracy and efficiency.The key parameter,transmissibility,was also modified according to the strong heterogeneity of stimulated reservoirs.The finite difference and semi-analytical tracking were used to accurately solve the pressure and saturation distribution between nodes.The FCEM is validated by comparing with traditional numerical simulation method,and the results show that the bottom hole pressure simulated by the FCEM is consistent with the results from traditional numerical simulation method,and the matching rate is larger than 95%.The proposed FCEM was also used in the optimization of fracturing parameters by coupling the hydraulic fracture propagation method and intelligent optimization algorithm.The integrated intelligent optimization approach for multi-parameters,such as perforation number,perforation location,and displacement in hydraulic fracturing is proposed.The proposed approach was applied in a shale gas reservoir,and the result shows that the optimized perforation location and morphology distribution are related to the distribution of porosity/permeability.When the perforation location and displacement are optimized with the same fracture number,NPV increases by 70.58%,which greatly improves the economic benefits of unconventional reservoirs.This work provides a new way for flow simulation and optimization of hydraulic fracture morphology of multi-fractured horizontal wells in unconventional reservoirs.展开更多
The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage syst...The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.展开更多
Legal terms is widely used in varied law-related activities.However,it can be easily found that it is the professionalism of legal language that have results into the appearance of its discourse hegemony and the socia...Legal terms is widely used in varied law-related activities.However,it can be easily found that it is the professionalism of legal language that have results into the appearance of its discourse hegemony and the social integration function regarding the nature of law’s social command and dispute settlement mechanism at large.Therefore,there is a need to analyze the operation of legal language and its whole influence upon individuals and certain human groups to figure out the means of improvement and optimization to better serve the Chinese rule of legal modernization drive plus the facilitation of social harmony.展开更多
综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;...综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。展开更多
基金CAPES(Coordenacao de Aperfeicoamento de Pessoal de Nível Superior)CNPq(Conselho Nacional de Desenvolvimento Científico e Tecnológico,grant number 161464/2013-0)for financial support.
文摘This paper proposes the use of the flexible tolerance method(FTM) modified with adaptive Nelder–Mead parameters and barrier to solve constrained optimization problems. The problems used to analyze the performance of the methods were taken from G-Suite functions, and the methods with the best performance were applied in mass integration problems. Four methods were proposed:(1) flexible tolerance method(FTM) using adaptive parameters(FTMA),(2) flexible tolerance method with scaling(FTMS) and with adaptive parameters(FTMAS),(3) FTMS including the barrier modification(MFTMS) and(4) MFTMS hybridized with PSO(MFTMS-PSO). The success rates of these methods were 100%(MFTMS), 85%(MFTMS-PSO), 40%(FTMAS) and 30%(FTMA).Numerical experiments indicated that the MFTMS could efficiently and reliably improve the accuracy of global optima. In mass integration, the method was able, from current process situation, to reach the optimum process configuration that includes integration issues, which was not possible using FTM in its standard formulation. The hybridization of FTMS with PSO(without barrier), FTMS-PSO, was also able to solve mass integration problems efficiently.
基金provided by the National Natural Science Foundation of China(No.51404272)the Hunan Province Key Laboratory of Coal Resources Clean-Utilization and Mine Environment Protection(No.E21224)
文摘In order to obtain accurate probability integration method(PIM) parameters for surface movement of multi-panel mining, a genetic algorithm(GA) was used to optimize the parameters. As the measured surface movement is affected by more than one mining panel, traditional PIM parameter inversion model is difficult to ensure the reliability of the results due to the complexity of rock movement. With crossover,mutation and selection operators, GA can perform a global optimization search and has high computation efficiency. Compared with the pattern search algorithm, the fitness function can avoid falling into local minima traps. GA reduces the risk of local minima traps which improves the accuracy and reliability with the mutation mechanism. Application at Xuehu colliery shows that GA can be used to inverse the PIM parameters for multi-panel surface movement observation, and reliable results can be obtained. The research provides a new way for back-analysis of PIM parameters for mining subsidence under complex conditions.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
基金Project supported by the National Natural Science Foundation of China(No.19972059).
文摘A strategy is proposed based on the stochastic averaging method for quasi non- integrable Hamiltonian systems and the stochastic dynamical programming principle.The pro- posed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation.By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional av- eraged It stochastic differential equation.By using the stochastic dynamical programming princi- ple the dynamical programming equation for minimizing the response of the system is formulated. The optimal control law is derived from the dynamical programming equation and the bounded control constraints.The response of optimally controlled systems is predicted through solving the FPK equation associated with It stochastic differential equation.An example is worked out in detail to illustrate the application of the control strategy proposed.
文摘Current machining studies have reported effects of prevalent and common factors,while ultra⁃high finish requires holistic approach to identify all factors and investigate their effects on machining of hard to machine materials.In this work,a less investigated yet important factor,roughness of the uncut surface,was studied,and its effects on the individual response,i.e.,surface finish of the machined part,were found to be significant.AISI 316,which is mainly applied in strategic areas,was selected and three effective turning factors,cutting speed(A),feed rate(B),and roughness of the uncut surface(C)on three output responses including surface roughness of the machined surface(Ra),microhardness(HV),and material removal rate(MRR),were reported.Further,single response optimization of the individual output response and multi⁃response optimization of all the three responses were carried out.Taguchi L9 orthogonal array based signal⁃to⁃noise(S/N)ratio method was used for individual response optimization,and grey relational analysis(GRA)was employed for multi⁃response optimization.Effects of the process factors on the output responses were evaluated through inclusive statistical analyses.The individual response optimization revealed that there was a considerable effect of roughness of the uncut surface on the machining performance.Results of the GRA illustrated that the speed during the cutting process and the feed rate had substantial trace on the surface integrity(indicated by Ra and HV)and production rate(indicated by MRR),while roughness of the uncut surface did not have a significant effect.
文摘The penalty function method of continuum shape optimization and its sensitivity analysis technique are presented. A relatively simple integrated shape optimization system is developed and used to optimize the design of the inner frame shape of a three-axis test table. The result shows that the method converges well, and the system is stable and reliable.
基金supported the National Natural Science Foundation of China(No.52004033,51922007,and 51874044).
文摘Efficient flow simulation and optimization methods of hydraulic fracture morphology in unconventional reservoirs are effective ways to enhance oil/gas recovery.Based on the connection element method(CEM)and distribution of stimulated reservoir volume,the complex hydraulic fracture morphology was accurately described using heterogeneous node connection system.Then a new fracture connection element method(FCEM)for fluid flow in stimulated unconventional reservoirs with complex hydraulic fracture morphology was proposed.In the proposed FCEM,the arrangement of dense nodes in the stimulated area and sparse nodes in the unstimulated area ensures the calculation accuracy and efficiency.The key parameter,transmissibility,was also modified according to the strong heterogeneity of stimulated reservoirs.The finite difference and semi-analytical tracking were used to accurately solve the pressure and saturation distribution between nodes.The FCEM is validated by comparing with traditional numerical simulation method,and the results show that the bottom hole pressure simulated by the FCEM is consistent with the results from traditional numerical simulation method,and the matching rate is larger than 95%.The proposed FCEM was also used in the optimization of fracturing parameters by coupling the hydraulic fracture propagation method and intelligent optimization algorithm.The integrated intelligent optimization approach for multi-parameters,such as perforation number,perforation location,and displacement in hydraulic fracturing is proposed.The proposed approach was applied in a shale gas reservoir,and the result shows that the optimized perforation location and morphology distribution are related to the distribution of porosity/permeability.When the perforation location and displacement are optimized with the same fracture number,NPV increases by 70.58%,which greatly improves the economic benefits of unconventional reservoirs.This work provides a new way for flow simulation and optimization of hydraulic fracture morphology of multi-fractured horizontal wells in unconventional reservoirs.
文摘The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.
文摘Legal terms is widely used in varied law-related activities.However,it can be easily found that it is the professionalism of legal language that have results into the appearance of its discourse hegemony and the social integration function regarding the nature of law’s social command and dispute settlement mechanism at large.Therefore,there is a need to analyze the operation of legal language and its whole influence upon individuals and certain human groups to figure out the means of improvement and optimization to better serve the Chinese rule of legal modernization drive plus the facilitation of social harmony.
文摘综合能源系统(integrated energy system,IES)作为能源转型中的重要环节已得到越来越多国家的广泛关注。构建一套匹配中国国情的综合能源系统评价体系和评价方法不仅能够为综合能源系统规划后评价打下基础,以此对规划方案进行优劣排序;还能够提高综合能源系统项目的管理水平,在制定统一、完整的综合能源系统综合评价标准时提供参考。为此,首先结合园区IES基本特征以及运行特性,构建包含经济性、可靠性、环保性以及智能友好性4个方面的综合评价指标体系;然后为解决IES在运行中的不确定性问题,对基于传统云物元模型的综合评价体系提出云熵优化,即考虑不同评价者对模糊性的可接受程度;为解决单一赋权方法可能导致的评价结果过于主观或过于客观的问题,选择基于最小鉴别信息原理将决策实验室法与熵权法相结合的综合赋权法,并采用变权法进一步完善综合评价指标;最后通过算例分析,验证所提综合评价体系的科学正确性。