After a reivew of basic concepts in multiple criteria optimization, the paper presents a characterization of noncooperative equilibria in multiple criteria games in normal form either by weighted sums or by. order-con...After a reivew of basic concepts in multiple criteria optimization, the paper presents a characterization of noncooperative equilibria in multiple criteria games in normal form either by weighted sums or by. order-consistent achievement scalarizing functions, for convex and nonconvex cases. Possible applications of multiple criteria games and such characterizations of their equilibria are indicated. The analysis of multiple criteria games might be especially useful when studying reasons of possible conflict escalation processes and ways of preventing them.展开更多
A design approach is presented in this paper for underactuation in robotic finger mechanisms. The characters of underactuated finger mechanisms are introduced as based on linkage and spring systems. The feature of sel...A design approach is presented in this paper for underactuation in robotic finger mechanisms. The characters of underactuated finger mechanisms are introduced as based on linkage and spring systems. The feature of self-adaptive enveloping grasp by underactuated finger mechanisms is discussed with feasible in grasping unknown objects. The design problem of robotic fingers is analyzed by looking at many aspects for an optimal functionality. Design problems and requirements for underactuated mechanisms are formulated as related to human-like robotic fingers. In particular, characteristics of finger mechanisms are analyzed and optimality criteria are summarized with the aim to formulate a general design algorithm. A general multi-objective optimization design approach is applied as based on a suitable optimization problem by using suitable expressions of optimality criteria. An example is illustrated as an improvement of finger mechanism in Laboratory of Robotics and Mechatronics (LARM) Hand. Results of design outputs and grasp simulations are reported with the aim to show the practical feasibility of the proposed concepts and computations.展开更多
文摘After a reivew of basic concepts in multiple criteria optimization, the paper presents a characterization of noncooperative equilibria in multiple criteria games in normal form either by weighted sums or by. order-consistent achievement scalarizing functions, for convex and nonconvex cases. Possible applications of multiple criteria games and such characterizations of their equilibria are indicated. The analysis of multiple criteria games might be especially useful when studying reasons of possible conflict escalation processes and ways of preventing them.
基金supported by Key International S&T Cooperation Project (Grant No. 2008DFA81280)Part of this work has been developed within the project No.27 of the Italy-China program 2006–2009+1 种基金A joined study of first author at Laboratory of Robotics and Mechatronics (LARM) during 2007–2008 has been supported by state scholarship program of China Scholarship Council (CSC)Innovation Foundation of Beijing University of Aeronautics and Astronautics (BUAA) for PhD Graduates
文摘A design approach is presented in this paper for underactuation in robotic finger mechanisms. The characters of underactuated finger mechanisms are introduced as based on linkage and spring systems. The feature of self-adaptive enveloping grasp by underactuated finger mechanisms is discussed with feasible in grasping unknown objects. The design problem of robotic fingers is analyzed by looking at many aspects for an optimal functionality. Design problems and requirements for underactuated mechanisms are formulated as related to human-like robotic fingers. In particular, characteristics of finger mechanisms are analyzed and optimality criteria are summarized with the aim to formulate a general design algorithm. A general multi-objective optimization design approach is applied as based on a suitable optimization problem by using suitable expressions of optimality criteria. An example is illustrated as an improvement of finger mechanism in Laboratory of Robotics and Mechatronics (LARM) Hand. Results of design outputs and grasp simulations are reported with the aim to show the practical feasibility of the proposed concepts and computations.