期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Optimized Dispatching Method for Flexibility Improvement of AC-MTDC Distribution Systems Considering Aggregated Electric Vehicles
1
作者 Xingyue Jiang Shouxiang Wang +1 位作者 Qianyu Zhao Xuan Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期1857-1867,共11页
With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage... With the increasing use of renewable resources and electric vehicles(EVs), the variability and uncertainty in their nature put forward a high requirement for flexibility in AC distribution system incorporating voltage source converter(VSC) based multi-terminal direct current(MTDC) grids. In order to improve the capability of distribution systems to cope with uncertainty, the flexibility enhancement of AC-MTDC distribution systems considering aggregated EVs is studied. Firstly, the charging and discharging model of one EV is proposed considering the users' demand difference and traveling needs. Based on this, a vehicle-to-grid(V2G) control strategy for aggregated EVs to participate in the flexibility promotion of distribution systems is provided. After that, an optimal flexible dispatching method is proposed to improve the flexibility of power systems through cooperation of VSCs, controllable distributed generations(CDGs), aggregated EVs, and energy storage systems(ESSs). Finally, a case study of an AC-MTDC distribution system is carried out. Simulation results show that the proposed dispatching method is capable of effectively enhancing the system flexibility, reducing renewable power curtailment, decreasing load abandonment, and cutting down system cost. 展开更多
关键词 Multi-terminal direct current(MTDC) distribution system aggregated electric vehicle(EV) FLEXIBILITY optimized dispatching
原文传递
Optimized dispatch of wind farms with power control capability for power system restoration 被引量:7
2
作者 Yunyun XIE Changsheng LIU +3 位作者 Qiuwei WU Kairong LI Qian ZHOU Minghui YIN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第6期908-916,共9页
As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of... As the power control technology of wind farms develops,the output power of wind farms can be constant,which makes it possible for wind farms to participate in power system restoration.However,due to the uncertainty of wind energy,the actual output power can’t reach a constant dispatch power in all time intervals,resulting in uncertain power sags which may induce the frequency of the system being restored to go outside the security limits.Therefore,it is necessary to optimize the dispatch of wind farms participating in power system restoration.Considering that the probability distribution function(PDF)oftransient power sags is hard to obtain,a robust optimization model is proposed in this paper,which can maximize the output power of wind farms participating in power system restoration.Simulation results demonstrate that the security constraints of the restored system can be kept within security limits when wind farm dispatch is optimized by the proposed method. 展开更多
关键词 BLACKOUT dispatch optimization of wind farm Power control of wind farm System restoration Uncertainty of wind energy
原文传递
Optimal dispatch approach for rural multi-energy supply systems considering virtual energy storage
3
作者 Yanze Xu Yunfei Mu +3 位作者 Haijie Qi Hairun Li Peng Yu Shumin Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期675-688,共14页
In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply sys... In response to the underutilization of energy and insufficient flexible operation capability of rural energy supply systems in China,this study proposes an optimal dispatch approach for a rural multi-energy supply system(RMESS)considering virtual energy storage(VES).First,to enable the flexible utilization of rural biomass resources and the thermal inertia of residential building envelopes,this study constructed VES-I and VES-II models that describe electrical-thermal and electrical-gas coupling from an electrical viewpoint.Subsequently,an RMESS model encompassing these two types of VES was formulated.This model delineates the intricate interplay of multi-energy components within the RMESS framework and facilitates the precise assessment of the adjustable potential for optimizing RMESS operations.Based on the above models,a day-ahead optimal dispatch model for an RMESS considering a VES is proposed to achieve optimal economic performance while ensuring efficient energy allocation.Comparative simulations validated the effectiveness of the VES modeling and the day-ahead optimal dispatch approach for the RMESS. 展开更多
关键词 Virtual energy storage Rural multi-energy supply system Multi-energy coupling Optimal dispatch
下载PDF
Finite-time economic model predictive control for optimal load dispatch and frequency regulation in interconnected power systems
4
作者 Yubin Jia Tengjun Zuo +3 位作者 Yaran Li Wenjun Bi Lei Xue Chaojie Li 《Global Energy Interconnection》 EI CSCD 2023年第3期355-362,共8页
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys... This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm. 展开更多
关键词 Economic model predictive control Finite-time convergence Optimal load dispatch Frequency stability
下载PDF
Two-Stage Optimal Dispatching of Wind Power-Photovoltaic-Solar Thermal Combined System Considering Economic Optimality and Fairness
5
作者 Weijun Li Xin Die +2 位作者 Zhicheng Ma Jinping Zhang Haiying Dong 《Energy Engineering》 EI 2023年第4期1001-1022,共22页
Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching m... Aiming at the problems of large-scale wind and solar grid connection,how to ensure the economy of system operation and how to realize fair scheduling between new energy power stations,a two-stage optimal dispatching model of wind power-photovoltaic-solar thermal combined system considering economic optimality and fairness is proposed.Firstly,the first stage dispatching model takes the overall economy optimization of the system as the goal and the principle of maximizing the consumption of wind and solar output,obtains the optimal output value under the economic conditions of each new energy station,and then obtains the maximum consumption space of the new energy station.Secondly,based on the optimization results of the first stage,the second stage dispatching model uses the dispatching method of fuzzy comprehensive ranking priority to prioritize the new energy stations,and then makes a fair allocation to the dispatching of the wind and solar stations.Finally,the analysis of a specific example shows that themodel can take into account the fairness of active power distribution of new energy stations on the basis of ensuring the economy of system operation,make full use of the consumption space,and realize the medium and long-term fairness distribution of dispatching plan. 展开更多
关键词 Economic optimality FAIRNESS combined power generation the fuzzy comprehensive ranking priority optimal dispatching
下载PDF
Optimal flexibility dispatch of demand side resources with high penetration of renewables:a Stackelberg game method 被引量:5
6
作者 Peng Lu Hao Lv +4 位作者 Nian Liu Tieqiang Wang Jianpei Han Wenwu Zhang Li Ma 《Global Energy Interconnection》 CAS CSCD 2021年第1期28-38,共11页
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t... To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications. 展开更多
关键词 Demand side resource Optimal dispatch Aggregate flexibility Stackelberg game Decentralized solution
下载PDF
Multiobjective optimal dispatch of microgrid based on analytic hierarchy process and quantum particle swarm optimization 被引量:7
7
作者 Yuxin Zhao Xiaotong Song +1 位作者 Fei Wang Dawei Cui 《Global Energy Interconnection》 CAS 2020年第6期562-570,共9页
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat... Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field. 展开更多
关键词 Analytic hierarchy process(AHP) Quantum particle swarm optimization(QPSO) Multiobjective optimal dispatch Microgrid.
下载PDF
Optimal dispatching method for integrated energy system based on robust economic model predictive control considering source-load power interval prediction 被引量:3
8
作者 Yang Yu Jiali Li Dongyang Chen 《Global Energy Interconnection》 EI CAS CSCD 2022年第5期564-578,共15页
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti... Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved. 展开更多
关键词 Integrated energy system Source-load uncertainty Interval prediction Robust economic model predictive control Optimal dispatching.
下载PDF
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
9
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic dispatch Lagrange Multiplier Algorithm Combined Heat and Power Constraints and Objective Functions Optimal dispatch
下载PDF
Distributionally Robust Optimal Dispatch of Virtual Power Plant Based on Moment of Renewable Energy Resource
10
作者 Wenlu Ji YongWang +2 位作者 Xing Deng Ming Zhang Ting Ye 《Energy Engineering》 EI 2022年第5期1967-1983,共17页
Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This ... Virtual power plants can effectively integrate different types of distributed energy resources,which have become a new operation mode with substantial advantages such as high flexibility,adaptability,and economy.This paper proposes a distributionally robust optimal dispatch approach for virtual power plants to determine an optimal day-ahead dispatch under uncertainties of renewable energy sources.The proposed distributionally robust approach characterizes probability distributions of renewable power output by moments.In this regard,the faults of stochastic optimization and traditional robust optimization can be overcome.Firstly,a second-order cone-based ambiguity set that incorporates the first and second moments of renewable power output is constructed,and a day-ahead two-stage distributionally robust optimization model is proposed for virtual power plants participating in day-ahead electricity markets.Then,an effective solution method based on the affine policy and second-order cone duality theory is employed to reformulate the proposed model into a deterministic mixed-integer second-order cone programming problem,which improves the computational efficiency of the model.Finally,the numerical results demonstrate that the proposed method achieves a better balance between robustness and economy.They also validate that the dispatch strategy of virtual power plants can be adjusted to reduce costs according to the moment information of renewable power output. 展开更多
关键词 Virtual power plant optimal dispatch UNCERTAINTY distributionally robust optimization affine policy
下载PDF
Study on Risk Dispatch Model of Hydropower Station in the Market Environment
11
作者 Duan Jinchang and Ding Jie State Grid Electric Power Research Institute 《Electricity》 2011年第4期38-40,共3页
In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into considerat... In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example. 展开更多
关键词 hydropower station optimal dispatch risk dispatch model PSO algorithm
下载PDF
A robust optimization model for demand response management with source-grid-load collaboration to consume wind-power
12
作者 Xiangfeng Zhou Chunyuan Cai +3 位作者 Yongjian Li Jiekang Wu Yaoguo Zhan Yehua Sun 《Global Energy Interconnection》 EI CSCD 2023年第6期738-750,共13页
To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitme... To accommodate wind power as safely as possible and deal with the uncertainties of the output power of winddriven generators,a min-max-min two-stage robust optimization model is presented,considering the unit commitment,source-network load collaboration,and control of the load demand response.After the constraint functions are linearized,the original problem is decomposed into the main problem and subproblem as a matrix using the strong dual method.The minimum-maximum of the original problem was continuously maximized using the iterative method,and the optimal solution was finally obtained.The constraint conditions expressed by the matrix may reduce the calculation time,and the upper and lower boundaries of the original problem may rapidly converge.The results of the example show that the injected nodes of the wind farms in the power grid should be selected appropriately;otherwise,it is easy to cause excessive accommodation of wind power at some nodes,leading to a surge in reserve costs and the load demand response is continuously optimized to reduce the inverse peak regulation characteristics of wind power.Thus,the most economical optimization scheme for the worst scenario of the output power of the generators is obtained,which proves the economy and reliability of the two-stage robust optimization method. 展开更多
关键词 Renewable power system Optimal dispatching Wind-power consumption Source-grid-load collaboration Load demand response Two-stage robust optimization model
下载PDF
Distributed Dispatch of Multiple Energy Systems Considering Carbon Trading 被引量:1
13
作者 Yue Xiang Mengqiu Fang +3 位作者 Junyong Liu Pingliang Zeng Ping Xue Gang Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期459-469,共11页
As an integrated carrier of energy production,transmission,distribution,conversion,storage,and utilization,multiple energy systems(MESs)have significant low-carbon potential.This paper proposes a hierarchical distribu... As an integrated carrier of energy production,transmission,distribution,conversion,storage,and utilization,multiple energy systems(MESs)have significant low-carbon potential.This paper proposes a hierarchical distributed dispatch model of MESs considering carbon trading,which is composed of the lower autonomous operation level of each MES and the upper coordinated control level.Different carbon emission sources are considered,including combined heat and power(CHP)units,gas boilers,and power to gas(P2G)devices.The transactive control(TC)mechanism is used to solve the model by introducing a virtual price signal.In the case study based on a 3-MES system,the effectiveness of the proposed distributed method is proved by comparison with a centralized algorithm.Meanwhile,the impacts of different carbon prices on MESs with different resource endowments are analyzed from the aspects of scheduling results,carbon emissions,clean energy consumption rate,and comprehensive operating costs. 展开更多
关键词 Carbon trading distributed optimal dispatch transactive control multiple energy systems
原文传递
Low-carbon Economic Dispatch of Electricity-Heat-Gas Integrated Energy Systems Based on Deep Reinforcement Learning 被引量:1
14
作者 Yuxian Zhang Yi Han +1 位作者 Deyang Liu Xiao Dong 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第6期1827-1841,共15页
The optimal dispatch methods of integrated energy systems(IESs) currently struggle to address the uncertainties resulting from renewable energy generation and energy demand. Moreover, the increasing intensity of the g... The optimal dispatch methods of integrated energy systems(IESs) currently struggle to address the uncertainties resulting from renewable energy generation and energy demand. Moreover, the increasing intensity of the greenhouse effect renders the reduction of IES carbon emissions a priority. To address these issues, a deep reinforcement learning(DRL)-based method is proposed to optimize the low-carbon economic dispatch model of an electricity-heat-gas IES. In the DRL framework, the optimal dispatch model of the IES is formulated as a Markov decision process(MDP). A reward function based on the reward-penalty ladder-type carbon trading mechanism(RPLT-CTM) is introduced to enable the DRL agents to learn more effective dispatch strategies. Moreover, a distributed proximal policy optimization(DPPO) algorithm, which is a novel policy-based DRL algorithm, is employed to train the DRL agents. The multithreaded architecture enhances the exploration ability of the DRL agents in complex environments. Experimental results illustrate that the proposed DPPO-based IES dispatch method can mitigate carbon emissions and reduce the total economic cost. The RPLT-CTM-based reward function outperforms the CTM-based methods, providing a 4.42% and 6.41% decrease in operating cost and carbon emission, respectively. Furthermore, the superiority and computational efficiency of DPPO compared with other DRL-based methods are demonstrated by a decrease of more than 1.53% and 3.23% in the operating cost and carbon emissions of the IES, respectively. 展开更多
关键词 Integrated energy system(IES) carbon trading optimal dispatch deep reinforcement learning(DRL) distributed proximal policy optimization
原文传递
Optimization Scheme of Integrated Community Energy Utilization System Based on Improved Sine-Cosine Algorithm
15
作者 Xin Zhang Jinpeng Jiang +1 位作者 Haoran Zheng Jihong Zhang 《Energy Engineering》 EI 2022年第3期1117-1140,共24页
China consumes significant amount of natural gas in winter.The integrated community energy utilization system(ICEUS)cannot stabilize the output of electricity and heat if there is a shortage of natural gas.The operati... China consumes significant amount of natural gas in winter.The integrated community energy utilization system(ICEUS)cannot stabilize the output of electricity and heat if there is a shortage of natural gas.The operation cost of the system still needs improvement.An energy supply structure using garbage power as the core of ICEUS was established in the study.The optimal dispatchingmodel of ICEUS was established using the regulating characteristic of the community load.The sine-cosine algorithm(SCA)based on nonlinear factors and segmented weight was presented to solve the optimal dispatching model of ICEUS.From the simulation results,compared with particle swarm optimization algorithm(PSO),SCA,exponential sinecosine algorithm(ESCA),and parabolic sine-cosine algorithm(PSCA),the daily operation cost of ICEUS was reduced by the improved SCA by 4.4%,2.9%,2.6%and 4.1%,respectively,in winter.The same was true in summer.The daily system operating cost was effectively reduced by the algorithm proposed in the study.The cost benefits of the optimized ICEUS operation was realized. 展开更多
关键词 Multi-energy ICEUS SCA optimal dispatch PSO
下载PDF
Multi-objective optimal dispatch of household flexible loads based on their real-life operating characteristics and energy-related occupant behavior
16
作者 Zhengyi Luo Jinqing Peng +2 位作者 Maomao Hu Wei Liao Yi Fang 《Building Simulation》 SCIE EI CSCD 2023年第11期2005-2025,共21页
A model-based optimal dispatch framework was proposed to optimize operation of residential flexible loads considering their real-life operating characteristics,energy-related occupant behavior,and the benefits of diff... A model-based optimal dispatch framework was proposed to optimize operation of residential flexible loads considering their real-life operating characteristics,energy-related occupant behavior,and the benefits of different stakeholders.A pilot test was conducted for a typical household.According to the monitored appliance-level data,operating characteristics of flexible loads were identified and the models of these flexible loads were developed using multiple linear regression and K-means clustering methods.Moreover,a data-mining approach was developed to extract the occupant energy usage behavior of various flexible loads from the monitored data.Occupant behavior of appliance usage,such as daily turn-on times,turn-on moment,duration of each operation,preference of temperature setting,and flexibility window,were determined by the developed data-mining approach.Based on the established flexible load models and the identified occupant energy usage behavior,a many-objective nonlinear optimal dispatch model was developed aiming at minimizing daily electricity costs,occupants’dissatisfaction,CO_(2) emissions,and the average ramping index of household power profiles.The model was solved with the assistance of the NSGA-III and TOPSIS methods.Results indicate that the proposed framework can effectively optimize the operation of household flexible loads.Compared with the benchmark,the daily electricity costs,CO_(2) emissions,and average ramping index of household power profiles of the optimal plan were reduced by 7.3%,6.5%,and 14.4%,respectively,under the TOU tariff,while those were decreased by 9.5%,8.8%,and 23.8%,respectively,under the dynamic price tariff.The outputs of this work can offer guidance for the day-ahead optimal scheduling of household flexible loads in practice. 展开更多
关键词 household load flexibility flexible load modeling occupant energy usage behavior many-objective optimal dispatch NSGA-III
原文传递
Dispatch and bidding strategy of active distribution network in energy and ancillary services market 被引量:8
17
作者 Yao JIN Zhengyu WANG +1 位作者 Chuanwen JIANG Yu ZHANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第4期565-572,共8页
The active distribution network(ADN)is able to manage distributed generators(DGs),active loads and storage facilities actively.It is also capable of purchasing electricity from main grid and providing ancillary servic... The active distribution network(ADN)is able to manage distributed generators(DGs),active loads and storage facilities actively.It is also capable of purchasing electricity from main grid and providing ancillary services through a flexible dispatching mode.A competitive market environment is beneficial for the exploration of ADN’s activeness in optimizing dispatch and bidding strategy.In a bilateral electricity market,the decision variables such as bid volume and price can influence the market clearing price(MCP).The MCP can also have impacts on the dispatch strategy of ADN at the same time.This paper proposes a bilevel coordinate dispatch model with fully consideration of the information interaction between main grid and ADN.Simulation results on a typical ADN validate the feasibility of the proposed method.A balanced proportion between energy market and ancillary services market can be achieved. 展开更多
关键词 Active distribution network(ADN) Energy market Ancillary services market Optimal dispatch Bidding Strategy
原文传递
System Modeling and Optimal Dispatching of Multi-energy Microgrid with Energy Storage 被引量:5
18
作者 Liting Tian Lin Cheng +1 位作者 Jianbo Guo Kuihua Wu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第5期809-819,共11页
The coordinated operation and comprehensive utilization of multi-energy sources require systematic research.A multi-energy microgrid(MEMG)is a coupling system with multiple inputs and outputs.In this paper,a system mo... The coordinated operation and comprehensive utilization of multi-energy sources require systematic research.A multi-energy microgrid(MEMG)is a coupling system with multiple inputs and outputs.In this paper,a system model based on unified energy flows is proposed to describe the static relationship,and an analogue energy storage model is proposed to represent the time-dependency characteristics of energy transfer processes.Then,the optimal dispatching model of an MEMG is established as a mixed-integer linear programming(MILP)problem using piecewise linear approximation and convex relaxation.Finally,the system model and optimal dispatching method are validated in an MEMG,including district electricity,natural gas and heat supply,and renewable generation.The proposed model and method provide an effective way for the energy flow analysis and optimization of MEMGs. 展开更多
关键词 Energy flow energy storage multi-energy microgrid(MEMG) optimal dispatching
原文传递
Market-oriented Optimal Dispatching Strategy for a Wind Farm with a Multiple Stage Hybrid Energy Storage System 被引量:13
19
作者 Zhenyuan Zhang Yun Zhang +1 位作者 Qi Huang Wei-Jen Lee 《CSEE Journal of Power and Energy Systems》 SCIE 2018年第4期417-424,共8页
With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results... With the increased promotion of integrated energy power systems(IEPS),renewable energy and energy storage systems(ESS)play a more important role.However,the fluctuation and intermittent nature of wind not only results in substantial reliability and stability defects,but it also weakens the competitiveness of wind generation in the electric power market.Meanwhile,the way to further enhance the system reliability effectively improving market profits of wind farms is one of the most important aspects of Wind-ESS joint operational design.In this paper,a market-oriented optimized dispatching strategy for a wind farm with a multiple stage hybrid ESS is proposed.The first stage ESS is designed to improve the profits of wind generation through day-ahead market operations,the real-time marketbased second stage ESS is focused on day-ahead forecasting error elimination and wind power fluctuation smoothing,while the backup stage ESS is associated with them to provide the ancillary service.An interval forecasting method is adopted to help to ensure reliable forecast results of day-ahead wind power,electricity prices and loads.With this hybrid ESS design,supply reliability and market profits are simultaneously achieved for wind farms. 展开更多
关键词 dispatching optimization energy storage integrated energy power systems interval forecasting power market p2g wind power generation
原文传递
Real-time AGC dispatch units considering wind power and ramping capacity of thermal units 被引量:4
20
作者 Jingyi ZHANG Chao LU +1 位作者 Jie SONG Junbo ZHANG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2015年第3期353-360,共8页
The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generatio... The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generation control(AGC)and compensate the influence of wind power fluctuations simultaneously,ramping capacity should be considered in the dispatch model of thermals.Meanwhile,conventional methods in this area do not take the impact of transmission loss into the dispatch model,or rely on offline network model and parameters,failing to reflect the real relationships between the wind farms and thermal generators.This paper proposes an online approach for AGC dispatch units considering the above issues.Firstly,the power loss sensitivity is online identified using recursive least square method based on the real-time data of phasor measurement units.It sets up power balance constraint and results in a more accurate dispatch model.Then,an improved multi-objective optimization model of dispatch is proposed and a connection is established between the thermal units with fast ramping capacity and the wind farms with rapid fluctuations.Genetic algorithm is used to solve the dispatch model.The proposed method is compared with conventional methods in simulation case in the IEEE 30-bus system.Finally,simulation results verify the validity and the feasibility of identification method and optimization model. 展开更多
关键词 Ramping capacity Loss sensitivity Automatic generation control(AGC)optimal dispatch On-line identification Genetic algorithm
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部