Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orienta...Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And th...In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.展开更多
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim...Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.展开更多
Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link v...Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.展开更多
Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with meri...Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.展开更多
The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was prop...The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.展开更多
Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),thi...Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.展开更多
Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.Th...Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.展开更多
Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed ter...Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed terminal state and time. Applying the proposed optimal control to the simple two-input dual-stage actuator magnetic head positioning system with three degrees-of-freedom, the simulation results show that the system has no residual vibration at the terminal position and time, which can reduce the total access time during head positioning process. To verify the validation of the optimal control strategy of three degrees-of-freedom spring-mass models in actual magnetic head positioning of hard disk drives, a finite element model of an actual magnetic head positioning system is presented. Substituting the optimal control force from simple three degrees-of-freedom spring-mass models into the finite element model, the simulation results show that the magnetic head also has no residual vibration at the end of track-to-track travel. That is to say, the linear quadratic optimal control technique based on simple two-input dual- stage actuator system with three degrees-of-freedom proposed in this paper is of high reliability for the industrial application of an actual magnetic head positioning system.展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the desig...Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the design, optimization and visualization of a comb drive accelerator. In the simulation results, the post-optimization design has high performance in high frequency oscillation operating environment. The optimization is based on the ideal eigenfrequency and Nelder-Mead method. The 3-D working conditions are realized by testing and comparing the time and frequency domain of pre-optimized and optimized design whose frequency ranges from 2000 Hz to 5000 Hz. Finally, the electric potential and capacitance in comb drive are visualized, which shows the better electric signals and displacements.展开更多
This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an ele...This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.展开更多
基金supported by the S&T Special Program of Huzhou(Grant No.2023GZ09)the Open Fund Project of the ShanghaiKey Laboratory of Lightweight Structural Composites(Grant No.2232021A4-06).
文摘Carbon fiber composites,characterized by their high specific strength and low weight,are becoming increasingly crucial in automotive lightweighting.However,current research primarily emphasizes layer count and orientation,often neglecting the potential of microstructural design,constraints in the layup process,and performance reliability.This study,therefore,introduces a multiscale reliability-based design optimization method for carbon fiber-reinforced plastic(CFRP)drive shafts.Initially,parametric modeling of the microscale cell was performed,and its elastic performance parameters were predicted using two homogenization methods,examining the impact of fluctuations in microscale cell parameters on composite material performance.A finite element model of the CFRP drive shaft was then constructed,achieving parameter transfer between microscale and macroscale through Python programming.This enabled an investigation into the influence of both micro and macro design parameters on the CFRP drive shaft’s performance.The Multi-Objective Particle Swarm Optimization(MOPSO)algorithm was enhanced for particle generation and updating strategies,facilitating the resolution of multi-objective reliability optimization problems,including composite material layup process constraints.Case studies demonstrated that this approach leads to over 30%weight reduction in CFRP drive shafts compared to metallic counterparts while satisfying reliability requirements and offering insights for the lightweight design of other vehicle components.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘In order to address the issue of sensor configuration redundancy in intelligent driving,this paper constructs a multi-objective optimization model that considers cost,coverage ability,and perception performance.And then,combining a specific set of parameters,the NSGA-II algorithm is used to solve the multi-objective model established in this paper,and a Pareto front containing 24 typical configuration schemes is extracted after considering empirical constraints.Finally,using the decision preference method proposed in this paper that combines subjective and objective factors,decision scores are calculated and ranked for various configuration schemes from both cost and performance preferences.The research results indicate that the multi-objective optimization model established in this paper can screen and optimize various configuration schemes from the optimal principle of the vehicle,and the optimized configuration schemes can be quantitatively ranked to obtain the decision results for the vehicle under different preference tendencies.
基金Financial support from the National Natural Science Foundation of China (22022816 and 22078358)
文摘Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization.
基金supported in part by the Science Foundation of the Chinese Academy of Railway Sciences under Grant Number:2023QT001。
文摘Increasing attention has been paid to the efficiency improvement of the induction traction system of high-speed trains due to the high demand for energy saving. In emergency self-propelled mode, however, the dc-link voltage and the traction power of the motor are significantly reduced, resulting in decreased traction efficiency due to the low load and low speed operations. Aiming to tackle this problem, a novel efficiency improved control method is introduced to the emergency mode of high-speed train traction system in this paper. In the proposed method, a total loss model of induction motor considering the behaviors of both iron and copper loss is established. An improved iterative algorithm with decreased computational burden is then introduced, resulting in a fast solving of the optimal flux reference for loss minimization at each control period. In addition, considering the parameter variation problem due to the low load and low speed operations, a parameter estimation method is integrated to improve the controller's robustness. The effectiveness of the proposed method on efficiency improvement at low voltage and low load conditions is demonstrated by simulated and experimental results.
文摘Three major methods currently in the use of determining vehicle speed based on wheel speeds, the minimum wheel speed, minimum wheel speed corrected by slope method and the Kalman filter method, are analyzed, with merits and defects of each approach stated. Through simulations, the Kalman filter method based on minimum wheel speed shows improved accuracy, in addition to better adaptivity to vehicle reference speed. It also can be used to acceleration ship regulation (ASR) in part-time four-wheel drive vehicles.
基金Supported by the National Natural Science Foundation of China(51475045)
文摘The distribution of track tension on track link is complex when the tracked vehicles run at a high speed.A multi-drive track link structure,which changes the traditional induction wheel into the driving wheel was proposed.The mathematical model of the system was established and the distribution of track tension was studied.The combined simulation model of RecurDyn and Simulink of the structure with multi-drive track was established.The simulation results show that our proposed structure has more uniform tension distribution than traditional structures,especially under the high speed condition.The maximum tension can be reduced by 28 kN-36 kN and the transmission efficiency can be improved by10%-16% under high speed condition with this new structure.
基金supported by the Fundamental Research Funds for the Central Universities(No.2019YJS181)。
文摘Aiming at the problem of large AC copper loss caused by skin effects and proximity effects,and low efficiency at high speed of the hairpin-winding permanent magnet synchronous motor(PMSM)for electric vehicles(EVs),this paper firstly established the electromagnetic analytical model of the hairpin winding to calculate AC resistance.And the finite element model(FEM)of the hairpin-winding driving motor is established to calculate the AC characteristic of the hairpin winding at different speeds and temperatures.Then,combining modified particle swarm optimization(MPSO)and FEM,a 60 k W hairpin-winding PMSM is optimized under driving cycle conditions,and the electromagnetic performance and heat dissipation performance are compared with that of the traditional strand-winding motor.Finally,a prototype is made and an experimental platform is built to test the efficiency Map and temperature rise of the hairpin-winding motor over the whole speed range and verify the accuracy of the proposed optimization design method.The results show that the hairpin-winding PMSM not only has higher slot filling rate,high?efficiency range and power density,but also has better heat dissipation performance,which is suitable for application in the field of electric vehicles.
文摘Design and optimization of electrical drive systems often involve simultaneous consideration of multiple objectives that usually contradict to each other and multiple disciplines that normally coupled to each other.This paper aims to present efficient system-level multiobjective optimization methods for the multidisciplinary design optimization of electrical drive systems.From the perspective of quality control,deterministic and robust approaches will be investigated for the development of the optimization models for the proposed methods.Meanwhile,two approximation methods,Kriging model and Taylor expansion are employed to decrease the computation/simulation cost.To illustrate the advantages of the proposed methods,a drive system with a permanent magnet synchronous motor driven by a field oriented control system is investigated.Deterministic and robust Pareto optimal solutions are presented and compared in terms of several steady-state and dynamic performances(like average torque and speed overshoot)of the drive system.The robust multiobjective optimization method can produce optimal Pareto solutions with high manufacturing quality for the drive system.
基金Project supported by the National Natural Science Foundation of China (No. 10472038);the Science Foundation of the Ministry of Education of China for Ph.D. Programme (No. 20050730016);the National Science Foundation of China for 0utstanding Young Researchers (No. 10025208).
文摘Based on generalized the variation method, by introducing Hamilton function and Lagrange multiplier, this paper proposed a linear quadratic optimal control strategy for an incomplete controllable system with fixed terminal state and time. Applying the proposed optimal control to the simple two-input dual-stage actuator magnetic head positioning system with three degrees-of-freedom, the simulation results show that the system has no residual vibration at the terminal position and time, which can reduce the total access time during head positioning process. To verify the validation of the optimal control strategy of three degrees-of-freedom spring-mass models in actual magnetic head positioning of hard disk drives, a finite element model of an actual magnetic head positioning system is presented. Substituting the optimal control force from simple three degrees-of-freedom spring-mass models into the finite element model, the simulation results show that the magnetic head also has no residual vibration at the end of track-to-track travel. That is to say, the linear quadratic optimal control technique based on simple two-input dual- stage actuator system with three degrees-of-freedom proposed in this paper is of high reliability for the industrial application of an actual magnetic head positioning system.
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
文摘Comb-drive devises have been widely applied in many fields. However, the application of high frequency sensor, such as rocket chamber, still remains problems. In this work, a finite element code was used for the design, optimization and visualization of a comb drive accelerator. In the simulation results, the post-optimization design has high performance in high frequency oscillation operating environment. The optimization is based on the ideal eigenfrequency and Nelder-Mead method. The 3-D working conditions are realized by testing and comparing the time and frequency domain of pre-optimized and optimized design whose frequency ranges from 2000 Hz to 5000 Hz. Finally, the electric potential and capacitance in comb drive are visualized, which shows the better electric signals and displacements.
文摘This paper develops a parallel hybrid electric vehicle(PHEV)propor-tional integral controller with driving cycle.To improve fuel efficiency and reduce hazardous emissions in hybrid electric vehicles(HEVs)combine an electric motor(EM),a battery and an internal combustion engine(ICE).The electric motor assists the engine when accelerating,driving longer highways or climbing hills.This enables the use of a smaller,more efficient engine.It also makes use of the concept of regenerative braking to maximize energy efficiency.In a Hybrid Electric Vehicle(HEV),energy dissipated while braking is utilized to charge the battery.The proportional integral controller was used in this paper to analyze engine,motor performance and the New European Driving Cycle(NEDC)was used in the vehicle driving test using Matlab/Simulink.The proportional integral controllers were designed to track the desired vehicle speed and manage the vehi-cle’s energyflow.The Sea Lion Optimization(SLnO)methods were created to reduce fuel consumption in a parallel hybrid electric vehicle and the results were obtained for the New European Driving Cycle.