A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob...A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.展开更多
Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to...Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).展开更多
It is urgent to significantly reduce greenhouse gas emissions to actively deal with global warming.This paper investigates Shandong Province,a typical province of energy consumption,as the research object,aiming to op...It is urgent to significantly reduce greenhouse gas emissions to actively deal with global warming.This paper investigates Shandong Province,a typical province of energy consumption,as the research object,aiming to optimize total energy consumption and consumption structure in the future planning year.This paper constructs a methodological system to optimize energy consumption structure in Shandong Province,using a scenario combination of system dynamics(SD)prediction and analysis based on the coupling of key scenario elements affecting different energy consumption from different perspectives.Structural equation modeling and SD sensitivity analysis indicate an overlap between key factors restricting energy consumption.Pairing the key scenario factors can better reflect the internal mechanism of energy consumption development.Based on this,21 scenarios based on different combinations of the key elements are constructed.Through SD prediction and analysis,the most suitable scenario mode for optimizing energy consumption structure in Shandong Province is selected.This paper provides a suitable development range for the average gross domestic product growth rate,the proportion of secondary industry,energy consumption intensity of secondary industry,and the urbanization rate for Shandong Province.This paper can provide a reference for similar research and the government in formulating the optimization scheme of energy consumption structure.展开更多
In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system...In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system energy efficiency. However, current gas–solid separators, based on activated carbon adsorption technology, result in high pressure drops and increased maintenance costs. In the present study, a new combined gas–solid separator was developed for the TMSR-SF. Based on a simplified computational fluid dynamics (CFD) model, the gas–solid twophase flow and the motion trajectory of solid particles were simulated for this new separator using commercial ANSYS 16.0 software. The flow and separation mechanism for this structure were also been discussed in terms of their velocity effects and pressure field distributions, and then the structure was optimized based on the influence of key structural parameters on pressure and separation efficiency. The results showed that the standard k–ε model could be achieved and accurately simulated the new combined separator. In this new combined gas–solid separator, coarse particles are separated in the first stage using rotating centrifugal motion, and then fine particles are filtered in the second stage, giving a separation efficiency of up to 96.11%. The optimum blade inclination angle and numbers were calculated to be 45° and four, respectively. It implicated that the combined separator could be of great significance in a wide variety of applications.展开更多
This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimizat...This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimization methods. It inherits the ability in finding global optimum from PSO and also suits for discretized design domain. Some special schemes are used in order to provide higher computation efficiency. This method has only been tested with a convex optimization problem. The application in case of a concave problem will be a future study.展开更多
提出了一种将结构加筋布局优化和结构参数优化相结合的优化方法。该方法先对结构中的加强筋进行布局优化,然后再优化结构参数。在加筋布局优化中,用单元应变能密度灵敏度作为删除单元的准则。在参数优化中,目标函数和约束函数被近似地...提出了一种将结构加筋布局优化和结构参数优化相结合的优化方法。该方法先对结构中的加强筋进行布局优化,然后再优化结构参数。在加筋布局优化中,用单元应变能密度灵敏度作为删除单元的准则。在参数优化中,目标函数和约束函数被近似地表示为二阶表达式,并用改进的DFP(Davidon,Fletcher and Powell)方法来求优化解。为了降低计算复杂度,采用组合近似(CA)方法对修改后的结构位移和应力进行重分析,并应用该方法对储水箱结构进行了结构优化设计。数值结果表明,该方法处理板壳加筋结构优化问题十分有效,而且容易在计算机上实现。展开更多
基金The project supported by the State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.
文摘Plant derived natural fibers have been widely investigated as alternatives to synthetic fibers in reinforcing polymers.Researchers over the years have explored many plant fibers using different extraction processes to study their physical,chemical,and mechanical properties.In this context,the present study relates to the extraction,characterization,and optimization of Typha angustata L.stem fibers.For this purpose,desirability functions and response surface methodology were applied to simultaneously optimize the diameter(D),linear density(LD);yield(Y),lignin fraction(L),and tenacity(T)of Typha stem fibers.Typha stems have been subjected to both alkali(NaOH)and enzymatic(pectinex ultra-SPL)treatments.Three levels of process variables including enzyme concentration(10,15,and 20 ml/L)and treatment duration(10,15,and 20 days)were used to design the experiments according to the factorial design.Experimental results were examined by analysis of variance and fitted to second order polynomial model using multiple regression analysis.The Derringer’s desirability function released that the values of process variables generating optimized diameter,linear density,yield,lignin ratio and tenacity are 20 ml/L and 20 days for concentration of pectinex ultra-SPL enzyme and treatment duration,respectively.Confirmation was performed and high degree of correlation was found between the experimental and statistical values.Moreover,the morphological structure has been investigated by the scanning electron microscope,showing a crenelated structure of ultimate fiber bundles of cellulose composing the Typha fiber.Compared to Typha stem non-treated fibers(TSNTF),Typha stem combined treated fibers(TSCTF),brings to improve mechanical properties.This change in mechanical properties is affected by modifying the fiber structure showing alpha cellulose of(66.86%)and lignin ratio of(10.83%)with a crystallinity index of(58.47%).
文摘It is urgent to significantly reduce greenhouse gas emissions to actively deal with global warming.This paper investigates Shandong Province,a typical province of energy consumption,as the research object,aiming to optimize total energy consumption and consumption structure in the future planning year.This paper constructs a methodological system to optimize energy consumption structure in Shandong Province,using a scenario combination of system dynamics(SD)prediction and analysis based on the coupling of key scenario elements affecting different energy consumption from different perspectives.Structural equation modeling and SD sensitivity analysis indicate an overlap between key factors restricting energy consumption.Pairing the key scenario factors can better reflect the internal mechanism of energy consumption development.Based on this,21 scenarios based on different combinations of the key elements are constructed.Through SD prediction and analysis,the most suitable scenario mode for optimizing energy consumption structure in Shandong Province is selected.This paper provides a suitable development range for the average gross domestic product growth rate,the proportion of secondary industry,energy consumption intensity of secondary industry,and the urbanization rate for Shandong Province.This paper can provide a reference for similar research and the government in formulating the optimization scheme of energy consumption structure.
文摘In order to comply with discharge standards, a gas–solid separator is used to remove solid particles from the thorium molten salt reactor-solid fuel (TMSR-SF) system. As a key component, it directly determines system energy efficiency. However, current gas–solid separators, based on activated carbon adsorption technology, result in high pressure drops and increased maintenance costs. In the present study, a new combined gas–solid separator was developed for the TMSR-SF. Based on a simplified computational fluid dynamics (CFD) model, the gas–solid twophase flow and the motion trajectory of solid particles were simulated for this new separator using commercial ANSYS 16.0 software. The flow and separation mechanism for this structure were also been discussed in terms of their velocity effects and pressure field distributions, and then the structure was optimized based on the influence of key structural parameters on pressure and separation efficiency. The results showed that the standard k–ε model could be achieved and accurately simulated the new combined separator. In this new combined gas–solid separator, coarse particles are separated in the first stage using rotating centrifugal motion, and then fine particles are filtered in the second stage, giving a separation efficiency of up to 96.11%. The optimum blade inclination angle and numbers were calculated to be 45° and four, respectively. It implicated that the combined separator could be of great significance in a wide variety of applications.
文摘This paper presents a combination method of Particle Swarm Optimization (PSO) and topology optimization. With this method a better result can be achieved compared with the sequential application of these two optimization methods. It inherits the ability in finding global optimum from PSO and also suits for discretized design domain. Some special schemes are used in order to provide higher computation efficiency. This method has only been tested with a convex optimization problem. The application in case of a concave problem will be a future study.
文摘提出了一种将结构加筋布局优化和结构参数优化相结合的优化方法。该方法先对结构中的加强筋进行布局优化,然后再优化结构参数。在加筋布局优化中,用单元应变能密度灵敏度作为删除单元的准则。在参数优化中,目标函数和约束函数被近似地表示为二阶表达式,并用改进的DFP(Davidon,Fletcher and Powell)方法来求优化解。为了降低计算复杂度,采用组合近似(CA)方法对修改后的结构位移和应力进行重分析,并应用该方法对储水箱结构进行了结构优化设计。数值结果表明,该方法处理板壳加筋结构优化问题十分有效,而且容易在计算机上实现。