The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents' local smooth and strongly convex objective functions, over un...In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents' local smooth and strongly convex objective functions, over undirected connected graphs. Several distributed accelerated algorithms have been proposed for solving such a problem in the existing literature. In this paper, we provide insights for understanding these existing distributed algorithms from an ordinary differential equation(ODE) point of view. More specifically, we first derive an equivalent second-order ODE, which is the exact limit of these existing algorithms by taking the small step-size. Moreover, focusing on the quadratic objective functions, we show that the solution of the resulting ODE exponentially converges to the unique global optimal solution. The theoretical results are validated and illustrated by numerical simulations.展开更多
Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performan...Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91748112,61991403,61991404,and 61991400)。
文摘In this paper, we consider the distributed optimization problem, where the goal is to minimize the global objective function formed by a sum of agents' local smooth and strongly convex objective functions, over undirected connected graphs. Several distributed accelerated algorithms have been proposed for solving such a problem in the existing literature. In this paper, we provide insights for understanding these existing distributed algorithms from an ordinary differential equation(ODE) point of view. More specifically, we first derive an equivalent second-order ODE, which is the exact limit of these existing algorithms by taking the small step-size. Moreover, focusing on the quadratic objective functions, we show that the solution of the resulting ODE exponentially converges to the unique global optimal solution. The theoretical results are validated and illustrated by numerical simulations.
基金co-supported by the National Natural Science Foundation of China(Nos.71971115 and 62173305)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_0366).
文摘Task allocation is a key aspect of Unmanned Aerial Vehicle(UAV)swarm collaborative operations.With an continuous increase of UAVs’scale and the complexity and uncertainty of tasks,existing methods have poor performance in computing efficiency,robustness,and realtime allocation,and there is a lack of theoretical analysis on the convergence and optimality of the solution.This paper presents a novel intelligent framework for distributed decision-making based on the evolutionary game theory to address task allocation for a UAV swarm system in uncertain scenarios.A task allocation model is designed with the local utility of an individual and the global utility of the system.Then,the paper analytically derives a potential function in the networked evolutionary potential game and proves that the optimal solution of the task allocation problem is a pure strategy Nash equilibrium of a finite strategy game.Additionally,a PayOff-based Time-Variant Log-linear Learning Algorithm(POTVLLA)is proposed,which includes a novel learning strategy based on payoffs for an individual and a time-dependent Boltzmann parameter.The former aims to reduce the system’s computational burden and enhance the individual’s effectiveness,while the latter can ensure that the POTVLLA converges to the optimal Nash equilibrium with a probability of one.Numerical simulation results show that the approach is optimal,robust,scalable,and fast adaptable to environmental changes,even in some realistic situations where some UAVs or tasks are likely to be lost and increased,further validating the effectiveness and superiority of the proposed framework and algorithm.