期刊文献+
共找到547篇文章
< 1 2 28 >
每页显示 20 50 100
Two-dimensional silicon nanomaterials for optoelectronics
1
作者 Xuebiao Deng Huai Chen Zhenyu Yang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期15-29,共15页
Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new al... Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications. 展开更多
关键词 two-dimensionality SILICON NANOMATERIALS SYNTHESIS surface engineering optoelectronics
下载PDF
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception 被引量:1
2
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
下载PDF
Assembly of functional carboxymethyl cellulose/polyethylene oxide/anatase TiO_(2) nanocomposites and tuning the dielectric relaxation, optical, and photoluminescence performances
3
作者 Asmaa M.Ismail Abeer A.Reffaee Fawzy G.El Desouky 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期26-38,共13页
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti... Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes. 展开更多
关键词 anatase TiO_(2) CMC/PEO nanocomposites optical PHOTOLUMINESCENT electrical optoelectronics
下载PDF
Near-zero-adhesion-enabled intact wafer-scale resist-transfer printing for high-fidelity nanofabrication on arbitrary substrates
4
作者 Zhiwen Shu Bo Feng +5 位作者 Peng Liu Lei Chen Huikang Liang Yiqin Chen Jianwu Yu Huigao Duan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期313-326,共14页
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a... There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications. 展开更多
关键词 resist-based transfer printing near-zero adhesion critical surface energy wafer-scale nanofabrication in situ fabrication optoelectronic devices
下载PDF
Formation of Natural Melanin/TiO_(2) Nanostructure Hybrids with Enhanced Optical,Thermal and Magnetic Properties as a Soft Material
5
作者 Saja Algessair Nawal Madkhali 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ... The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics. 展开更多
关键词 natural melanin/TiO_(2) thermal stability OPTOELECTRONIC NANOSTRUCTURE UV radiation
下载PDF
Tailoring Classical Conditioning Behavior in TiO_(2) Nanowires:ZnO QDs-Based Optoelectronic Memristors for Neuromorphic Hardware
6
作者 Wenxiao Wang Yaqi Wang +5 位作者 Feifei Yin Hongsen Niu Young-Kee Shin Yang Li Eun-Seong Kim Nam-Young Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期265-280,共16页
Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso... Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future. 展开更多
关键词 Artificial intelligence Classical conditioning Neuromorphic computing Artificial visual memory Optoelectronic memristors ZnO Quantum dots
下载PDF
Bidirectional rectifier with gate voltage control based on Bi_(2)O_(2)Se/WSe_(2)heterojunction
7
作者 Ruonan Li Fangchao Lu +3 位作者 Jiajun Deng Xingqiu Fu Wenjie Wang He Tian 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期63-70,共8页
Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most ... Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most devices have a lower rectification ratio.In this work,the Bi_(2)O_(2)Se/WSe_(2)heterojunction prepared by us has a typeⅡband alignment,which can vastly suppress the channel current through the interface barrier so that the Bi_(2)O_(2)Se/WSe_(2)heterojunction device has a large rectification ratio of about 10^(5).Meanwhile,under different gate voltage modulation,the current on/off ratio of the device changes by nearly five orders of magnitude,and the maximum current on/off ratio is expected to be achieved 106.The photocurrent measurement reveals the behavior of recombination and space charge confinement,further verifying the bidirectional rectification behavior of heterojunctions,and it also exhibits excellent performance in light response.In the future,Bi_(2)O_(2)Se/WSe_(2)heterojunction field-effect transistors have great potential to reduce the volume of integrated circuits as a bidirectional controlled switching device. 展开更多
关键词 Bi_(2)O_(2)Se WSe_(2) HETEROJUNCTION bidirectional rectification optoelectronic devices
下载PDF
Recent Advances in Strain-Induced Piezoelectric and Piezoresistive Effect-Engineered 2D Semiconductors for Adaptive Electronics and Optoelectronics 被引量:4
8
作者 Feng Li Tao Shen +3 位作者 Cong Wang Yupeng Zhang Junjie Qi Han Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第8期236-279,共44页
The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ... The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications. 展开更多
关键词 2D semiconductors STRAIN Piezoelectric effect Piezoresistive effect Electronic and optoelectronics
下载PDF
Two-Dimensional Metal-Halide Perovskite-based Optoelectronics: Synthesis, Structure, Properties and Applications 被引量:3
9
作者 Hongda Li Tianyuan Luo +4 位作者 Shoufeng Zhang Zijun Sun Xiong He Wenfeng Zhang Haixin Chang 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期46-64,共19页
In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D... In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented. 展开更多
关键词 applications metal-halide perovskites optoelectronics TWO-DIMENSIONAL
下载PDF
Flexible electronics and optoelectronics of 2D van der Waals materials 被引量:2
10
作者 Huihui Yu Zhihong Cao +2 位作者 Zheng Zhang Xiankun Zhang Yue Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第4期671-690,共20页
Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays... Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics. 展开更多
关键词 two-dimensional van der Waals material two-dimensional van der Waals heterostructure flexible electronics flexible optoelectronics
下载PDF
High-throughput computational material screening of the cycloalkane-based two-dimensional Dion–Jacobson halide perovskites for optoelectronics 被引量:1
11
作者 Guoqi Zhao Jiahao Xie +5 位作者 Kun Zhou Bangyu Xing Xinjiang Wang Fuyu Tian Xin He Lijun Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期52-59,共8页
Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been ... Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications. 展开更多
关键词 first-principle calculations two-dimensional halide perovskites electronic structures Dion–Jacobson phaseperovskites optoelectronic applications
下载PDF
Optoelectronics Letters Vol .2 No.1 -No.6 2006 Total Contents
12
《Optoelectronics Letters》 EI 2006年第6期I0003-I0012,共10页
关键词 PING No.1 No.6 2006 Total Contents optoelectronics Letters Vol
下载PDF
Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra
13
作者 Cizhe Fang Yan Liu +5 位作者 Qingfang Zhang Genquan Han Xi Gao Yao Shao Jincheng Zhang Yue Hao 《Opto-Electronic Advances》 2018年第3期1-10,共10页
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by t... We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength. 展开更多
关键词 optoelectronics germanium-tin alloys mid-infrared spectra
下载PDF
Spectroscopic Analysis and Study of Charge Transport Properties for Pinacyanol Chloride-Organic Acceptor Complex as Potential Optoelectronics Material
14
作者 Sagarkumar M. Agravat Vishal R. Jain Ajay T. Oza 《American Journal of Analytical Chemistry》 2015年第8期694-707,共14页
Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chlo... Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chloride and its charge transfer (CT) complexes with chloranil, DDQ, TCNQ and TCNE as organic acceptors are studied in details. The CT complexes are having neither two absorption edges like ternary complex having one donor and two acceptors nor binary type with Lorentzian or Gaussian envelopes. The forbidden gap is direct band gap except chloranil complex due to increase in molecular distance and CT interaction. There is imperfect nesting and partial screening determining the mid-IR envelope, which is qualitatively different from the envelopes in binary systems. There is inverted parabola in some range below this envelope. It is explained how infrared absorption is related with the applications of such organic photoconductors in optoelectronic devices. 展开更多
关键词 ORGANIC PHOTOCONDUCTORS Charge Transfer COMPLEX Pinacyanol CHLORIDE Spectroscopy Optoelectronic Devices Diodes LEDs Solar Cells
下载PDF
Transparent Supercapacitors: From Optical Theories to Optoelectronics Applications
15
作者 Sang-Woo Kim Sang-Young Lee 《Energy & Environmental Materials》 2020年第3期265-285,共21页
The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enab... The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields. 展开更多
关键词 energy storage FLEXIBILITY optoelectronics transparent conductive electrodes transparent supercapacitors
下载PDF
Special Issue on Nanotechnology,Optoelectronics and Photonics Technologies
16
作者 TPC of NOPT’2010 Journal of Electronic Science and Technology 《Journal of Electronic Science and Technology of China》 2010年第1期1-1,共1页
International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Ma... International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Manufacturing Society of IACSIT (International Association of Computer Science and Information Technology), 展开更多
关键词 Special Issue on Nanotechnology optoelectronics and Photonics Technologies HIGH
下载PDF
Manufacturing of graphene based synaptic devices for optoelectronic applications 被引量:7
17
作者 Kui Zhou Ziqi Jia +8 位作者 Xin-Qi Ma Wenbiao Niu Yao Zhou Ning Huang Guanglong Ding Yan Yan Su-Ting Han Vellaisamy A L Roy Ye Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期150-177,共28页
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl... Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems. 展开更多
关键词 GRAPHENE synaptic device MEMRISTOR optoelectronic applications
下载PDF
Advances in the Application of Perovskite Materials 被引量:6
18
作者 Lixiu Zhang Luyao Mei +37 位作者 Kaiyang Wang Yinhua Lv Shuai Zhang Yaxiao Lian Xiaoke Liu Zhiwei Ma Guanjun Xiao Qiang Liu Shuaibo Zhai Shengli Zhang Gengling Liu Ligang Yuan Bingbing Guo Ziming Chen Keyu Wei Aqiang Liu Shizhong Yue Guangda Niu Xiyan Pan Jie Sun Yong Hua Wu‑Qiang Wu Dawei Di Baodan Zhao Jianjun Tian Zhijie Wang Yang Yang Liang Chu Mingjian Yuan Haibo Zeng Hin‑Lap Yip Keyou Yan Wentao Xu Lu Zhu Wenhua Zhang Guichuan Xing Feng Gao Liming Ding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期334-381,共48页
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allo... Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices. 展开更多
关键词 Perovskites Optoelectronic devices Neuromorphic devices Pressure-induced emission
下载PDF
Recent advances in nanofiber-based flexible transparent electrodes 被引量:2
19
作者 Houchao Zhang Xiaoyang Zhu +11 位作者 Yuping Tai Junyi Zhou Hongke Li Zhenghao Li Rui Wang Jinbao Zhang Youchao Zhang Wensong Ge Fan Zhang Luanfa Sun Guangming Zhang Hongbo Lan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期144-198,共55页
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna... Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics. 展开更多
关键词 NANOFIBER flexible transparent electrodes additive manufacturing flexible optoelectronic devices
下载PDF
Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications 被引量:1
20
作者 Jin‑Wook Lee Seong Min Kang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期494-513,共20页
In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution... In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices. 展开更多
关键词 Perovskites optoelectronics Light outcoupling Light harvesting PATTERNING
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部