Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new al...Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.展开更多
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept...The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.展开更多
Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,a...There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.展开更多
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ...The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.展开更多
Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex asso...Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.展开更多
Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most ...Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most devices have a lower rectification ratio.In this work,the Bi_(2)O_(2)Se/WSe_(2)heterojunction prepared by us has a typeⅡband alignment,which can vastly suppress the channel current through the interface barrier so that the Bi_(2)O_(2)Se/WSe_(2)heterojunction device has a large rectification ratio of about 10^(5).Meanwhile,under different gate voltage modulation,the current on/off ratio of the device changes by nearly five orders of magnitude,and the maximum current on/off ratio is expected to be achieved 106.The photocurrent measurement reveals the behavior of recombination and space charge confinement,further verifying the bidirectional rectification behavior of heterojunctions,and it also exhibits excellent performance in light response.In the future,Bi_(2)O_(2)Se/WSe_(2)heterojunction field-effect transistors have great potential to reduce the volume of integrated circuits as a bidirectional controlled switching device.展开更多
The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties ...The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.展开更多
In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D...In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented.展开更多
Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays...Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.展开更多
Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been ...Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.展开更多
We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by t...We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.展开更多
Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chlo...Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chloride and its charge transfer (CT) complexes with chloranil, DDQ, TCNQ and TCNE as organic acceptors are studied in details. The CT complexes are having neither two absorption edges like ternary complex having one donor and two acceptors nor binary type with Lorentzian or Gaussian envelopes. The forbidden gap is direct band gap except chloranil complex due to increase in molecular distance and CT interaction. There is imperfect nesting and partial screening determining the mid-IR envelope, which is qualitatively different from the envelopes in binary systems. There is inverted parabola in some range below this envelope. It is explained how infrared absorption is related with the applications of such organic photoconductors in optoelectronic devices.展开更多
The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enab...The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields.展开更多
International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Ma...International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Manufacturing Society of IACSIT (International Association of Computer Science and Information Technology),展开更多
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl...Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.展开更多
Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allo...Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.展开更多
Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alterna...Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.展开更多
In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution...In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.展开更多
基金the National Natural Science Foundation of China(21905316,22175201)Guangdong Natural Science Foundation(2019A1515011748)+1 种基金the Science and Technology Planning Project of Guangdong Province(2019A050510018)Sun Yat-sen University.
文摘Silicon nanomaterials have been of immense interest in the last few decades due to their remarkable optoelectronic responses,elemental abundance,and higher biocompatibility.Two-dimensional silicon is one of the new allotropes of silicon and has many compelling properties such as quantum-confined photoluminescence,high charge carrier mobilities,anisotropic electronic and magnetic response,and non-linear optical properties.This review summarizes the recent advances in the synthesis of two-dimensional silicon nanomaterials with a range of structures(silicene,silicane,and multilayered silicon),surface ligand engineering,and corresponding optoelectronic applications.
基金supported by National Natural Science Foundation of China(No.51902250).
文摘The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
基金supported by the National Key Research and Development Program of China(No.2022YFB4602600)the National Natural Science Foundation of China(No.52221001)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20220406)。
文摘There is an urgent need for novel processes that can integrate different functional nanostructures onto specific substrates,so as to meet the fast-growing need for broad applications in nanoelectronics,nanophotonics,and fexible optoelectronics.Existing direct-lithography methods are difficult to use on fexible,nonplanar,and biocompatible surfaces.Therefore,this fabrication is usually accomplished by nanotransfer printing.However,large-scale integration of multiscale nanostructures with unconventional substrates remains challenging because fabrication yields and quality are often limited by the resolution,uniformity,adhesivity,and integrity of the nanostructures formed by direct transfer.Here,we proposed a resist-based transfer strategy enabled by near-zero adhesion,which was achieved by molecular modification to attain a critical surface energy interval.This approach enabled the intact transfer of wafer-scale,ultrathin-resist nanofilms onto arbitrary substrates with mitigated cracking and wrinkling,thereby facilitating the in situ fabrication of nanostructures for functional devices.Applying this approach,fabrication of three-dimensional-stacked multilayer structures with enhanced functionalities,nanoplasmonic structures with~10 nm resolution,and MoS2-based devices with excellent performance was demonstrated on specific substrates.These results collectively demonstrated the high stability,reliability,and throughput of our strategy for optical and electronic device applications.
基金Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(No.RG-21-09-53)。
文摘The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.
基金This work was supported by the Jinan City-University Integrated Development Strategy Project under Grant(JNSX2023017)National Research Foundation of Korea(NRF)grant funded by the Korea government(MIST)(RS-2023-00302751)+1 种基金by the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grants 2018R1A6A1A03025242 and 2018R1D1A1A09083353by Qilu Young Scholar Program of Shandong University.
文摘Neuromorphic hardware equipped with associative learn-ing capabilities presents fascinating applications in the next generation of artificial intelligence.However,research into synaptic devices exhibiting complex associative learning behaviors is still nascent.Here,an optoelec-tronic memristor based on Ag/TiO_(2) Nanowires:ZnO Quantum dots/FTO was proposed and constructed to emulate the biological associative learning behaviors.Effective implementation of synaptic behaviors,including long and short-term plasticity,and learning-forgetting-relearning behaviors,were achieved in the device through the application of light and electrical stimuli.Leveraging the optoelectronic co-modulated characteristics,a simulation of neuromorphic computing was conducted,resulting in a handwriting digit recognition accuracy of 88.9%.Furthermore,a 3×7 memristor array was constructed,confirming its application in artificial visual memory.Most importantly,complex biological associative learning behaviors were emulated by mapping the light and electrical stimuli into conditioned and unconditioned stimuli,respectively.After training through associative pairs,reflexes could be triggered solely using light stimuli.Comprehen-sively,under specific optoelectronic signal applications,the four features of classical conditioning,namely acquisition,extinction,recovery,and generalization,were elegantly emulated.This work provides an optoelectronic memristor with associative behavior capabilities,offering a pathway for advancing brain-machine interfaces,autonomous robots,and machine self-learning in the future.
基金This work was supported by the National Natural Science Foundation of China(61704054,92161115,62374099,and 62022047)the Fundamental Research Funds for the Central Universities(JB2020MS042 and JB2019MS051).
文摘Two-dimensional(2D)WSe_(2)has received increasing attention due to its unique optical properties and bipolar behavior.Several WSe_(2)-based heterojunctions exhibit bidirectional rectification characteristics,but most devices have a lower rectification ratio.In this work,the Bi_(2)O_(2)Se/WSe_(2)heterojunction prepared by us has a typeⅡband alignment,which can vastly suppress the channel current through the interface barrier so that the Bi_(2)O_(2)Se/WSe_(2)heterojunction device has a large rectification ratio of about 10^(5).Meanwhile,under different gate voltage modulation,the current on/off ratio of the device changes by nearly five orders of magnitude,and the maximum current on/off ratio is expected to be achieved 106.The photocurrent measurement reveals the behavior of recombination and space charge confinement,further verifying the bidirectional rectification behavior of heterojunctions,and it also exhibits excellent performance in light response.In the future,Bi_(2)O_(2)Se/WSe_(2)heterojunction field-effect transistors have great potential to reduce the volume of integrated circuits as a bidirectional controlled switching device.
基金supported by the National Natural Science Foundation of China(51572025,51627801,61435010 and 51702219)the State Key Research Development Program of China(2019YFB2203503)+3 种基金Guangdong Basic and Applied Basic Research Foundation(2019A1515110209)the Science and Technology Innovation Commission of Shenzhen(JCYJ20170818093453105,JCYJ20180305125345378)National Foundation of China(41422050303)Beijing Municipal Science&Technology Commission and the Fundamental Research Funds for Central Universities.
文摘The development of two-dimensional(2D)semiconductors has attracted widespread attentions in the scientific community and industry due to their ultra-thin thickness,unique structure,excellent optoelectronic properties and novel physics.The excellent flexibility and outstanding mechanical strength of 2D semiconductors provide opportunities for fabricated strain-sensitive devices and utilized strain tuning their electronic and optic–electric performance.The strain-engineered one-dimensional materials have been well investigated,while there is a long way to go for 2D semiconductors.In this review,starting with the fundamental theories of piezoelectric and piezoresistive effect resulted by strain,following we reviewed the recent simulation works of strain engineering in novel 2D semiconductors,such as Janus 2D and 2D-Xene structures.Moreover,recent advances in experimental observation of strain tuning PL spectra and transport behavior of 2D semiconductors are summarized.Furthermore,the applications of strain-engineered 2D semiconductors in sensors,photodetectors and nanogenerators are also highlighted.At last,we in-depth discussed future research directions of strain-engineered 2D semiconductor and related electronics and optoelectronics device applications.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0700702)research start-up funding from Guangxi University of Science and Technology (No. 03190219)
文摘In the past decade, metal-halide perovskites have attracted increasing attention in optoelectronics, due to their superior optoelectronic properties.However, inherent instabilities of conventional three-dimensional(3D)perovskites over moisture, heat, and light remain a severe challenge before the realization of commercial application of metal-halide perovskites.Interestingly, when the dimensions of metal-halide perovskites are reduced to two dimensions(2D), many of the novel properties will arise, such as enlarged bandgap, high photoluminescence quantum yield, and large exciton binding energy. As a result, 2D metal-halide perovskite-based optoelectronic devices display excellent performance, particularly as ambient stable solar cells with excellent power conversion efficiency(PCE), high-performance light-emitting diodes(LEDs) with sharp emission peak, and high-sensitive photodetectors. In this review, we first introduce the synthesis, structure,and physical properties of 2D perovskites. Then, the 2D perovskite-based solar cells, LEDs, and photodetectors are discussed. Finally, a brief overview of the opportunities and challenges for 2D perovskite optoelectronics is presented.
基金supported by the Natural Science Foundation of Beijing Municipality(No.Z180011)the National Natural Science Foundation of China(Nos.51991340,51991342,51972022,92163205,and 52188101)+2 种基金the National Key Research and Development Program of China(No.2016YFA0202701)the Fundamental Research Funds for the Central Universities(No.FRF-TP-19-025A3)the Overseas Expertise Introduction Projects for Discipline Innovation(No.B14003)。
文摘Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries,including healthcare and wellness,electronic skins,the automotive industry,and foldable or rollable displays.Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface.Two-dimensional van der Waals materials(2D VdWMs)have exceptional multifunctional properties,including large specific area,dangling-bond-free interface,plane-to-plane van der Waals interactions,and excellent mechanical,electrical,and optical properties.Thus,2D VdWMs have considerable application potential in functional intelligent flexible devices.To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures,new designs and configurations of electronics and optoelectronics have emerged.However,these new designs and configurations do not consider lattice mismatch and process incompatibility issues.In this review,we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly.Moreover,we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.
基金supported by the National Natural Science Foundation of China (Grant No. 62004080)the Postdoctoral Innovative Talents Supporting Program (Grant No. BX20190143)the China Postdoctoral Science Foundation (Grant No. 2020M670834)。
文摘Two-dimensional(2D) layered perovskites have emerged as potential alternates to traditional three-dimensional(3D)analogs to solve the stability issue of perovskite solar cells. In recent years, many efforts have been spent on manipulating the interlayer organic spacing cation to improve the photovoltaic properties of Dion–Jacobson(DJ) perovskites. In this work, a serious of cycloalkane(CA) molecules were selected as the organic spacing cation in 2D DJ perovskites, which can widely manipulate the optoelectronic properties of the DJ perovskites. The underlying relationship between the CA interlayer molecules and the crystal structures, thermodynamic stabilities, and electronic properties of 58 DJ perovskites has been investigated by using automatic high-throughput workflow cooperated with density-functional(DFT) calculations.We found that these CA-based DJ perovskites are all thermodynamic stable. The sizes of the cycloalkane molecules can influence the degree of inorganic framework distortion and further tune the bandgaps with a wide range of 0.9–2.1 eV.These findings indicate the cycloalkane molecules are suitable as spacing cation in 2D DJ perovskites and provide a useful guidance in designing novel 2D DJ perovskites for optoelectronic applications.
基金The authors thank National Natural Science Foundation of China (Grant No. 61534004, 61604112 and 61622405).
文摘We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution,band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural pa-rameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.
文摘Organic photoconductor, pinacyanol chloride, has been studied with infrared spectroscopy because of its thermal activation energy (Ea) and band gap (Eg = 2Ea) lying in the infrared range. Particularly, pinacyanol chloride and its charge transfer (CT) complexes with chloranil, DDQ, TCNQ and TCNE as organic acceptors are studied in details. The CT complexes are having neither two absorption edges like ternary complex having one donor and two acceptors nor binary type with Lorentzian or Gaussian envelopes. The forbidden gap is direct band gap except chloranil complex due to increase in molecular distance and CT interaction. There is imperfect nesting and partial screening determining the mid-IR envelope, which is qualitatively different from the envelopes in binary systems. There is inverted parabola in some range below this envelope. It is explained how infrared absorption is related with the applications of such organic photoconductors in optoelectronic devices.
基金supported by the Basic Science Research Program(2018R1A2A1A05019733)Wearable Platform Materials Technology Center(2016R1A5A1009926)through the National Research Foundation of Korea(NRF)grant by the Korean Government(MSIT)Industry Technology Development Program(10080540)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)
文摘The ever-increasing demand for smart optoelectronics spurs the relentless pursuit of transparent wireless devices as a game-changing technology that can provide unseen visual information behind the electronics.To enable successful operation of the transparent wireless devices,their power sources should be highly transparent in addition to acquiring reliable electrochemical performance.Among various transparent power sources,supercapacitors(SCs)have been extensively investigated as a promising candidate due to their exceptional cyclability,power capability,material diversity,and scalable/low-cost processability.Herein,we describe current status and challenges of transparent SCs,with a focus on their core materials,performance advancements,and integration with application devices.A special attention is devoted to transparent conductive electrodes(TCEs)which act as a keyenabling component in the transparent SCs.Based on fundamental understanding of optical theories and operating principles of transparent materials,we comprehensively discuss materials chemistry,structural design,and fabrication techniques of TCEs.In addition,noteworthy progresses of transparent SCs are briefly overviewed in terms of their architectural design,opto-electrochemical performance,flexibility,form factors,and integration compatibility with transparent flexible/wearable devices of interest.Finally,development direction and outlook of transparent SCs are explored along with their viable roles in future application fields.
文摘International Conference on Nanotechnology, Optoelectronics and Photonics Technologies (NOPT) is an annual International Conference sponsored by Photonics and Microelectronics Society and Components, Packaging & Manufacturing Society of IACSIT (International Association of Computer Science and Information Technology),
基金the National Natural Science Foundation of China (Grant No. 61974093)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2023A1515012479)+2 种基金Guangdong Provincial Department of Science and Technology (Grant No. 2020A1515110883)the Science and Technology Innovation Commission of Shenzhen (Grant Nos. RCYX20200714114524157 and JCYJ20220818100206013)NTUT-SZU Joint Research Program (Grant No. NTUT-SZU-112-02)
文摘Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems.
基金the National Key Research and Development Program of China (2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02)the National Natural Science Foundation of China (21961160720)。
文摘Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices(solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices(artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.
基金supported by the National Natural Science Foundation of China(Grant No.52175331)the Support plan for Outstanding Youth Innovation Team in Universities of Shandong Province,China(Grand No.2020KJB003)Natural Science Foundation of Shandong Province,China(Granted Nos.ZR2022ME014,ZR2021ME139 and ZR2020ZD04)。
文摘Flexible and stretchable transparent electrodes are widely used in smart display,energy,wearable devices and other fields.Due to the limitations of flexibility and stretchability of indium tin oxide electrodes,alternative electrodes have appeared,such as metal films,metal nanowires,and conductive meshes.However,few of the above electrodes can simultaneously have excellent flexibility,stretchability,and optoelectronic properties.Nanofiber(NF),a continuous ultra-long one-dimensional conductive material,is considered to be one of the ideal materials for high-performance transparent electrodes with excellent properties due to its unique structure.This paper summarizes the important research progress of NF flexible transparent electrodes(FTEs)in recent years from the aspects of NF electrode materials,preparation technology and application.First,the unique advantages and limitations of various NF materials are systematically discussed.Then,we summarize the preparation technology of various advanced NF FTEs,and point out the future development trend.We also discuss the application of NFs in solar cells,supercapacitors,electric heating equipments,sensors,etc,and analyze its development potential in flexible electronic equipment,as well as problems that need to be solved.Finally,the challenges and future development trends are proposed in the wide application of NF FTEs in the field of flexible optoelectronics.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2020R1I1A3054824)supported by the Basic Research Program through the NRF funded by the MSIT(Ministry of Science and ICT,2021R1A4A1032762)+2 种基金financial support by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(no.20213030010400)the financial support by the NRF grant funded by the MSIT under the contract numbers 2022R1C1C1011975。
文摘In recent years,metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties.The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition,crystal growth,and defect engineering of perovskites.As device performances approach their theoretical limits,effective optical management becomes essential for achieving higher efficiency.In this review,we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices.We initially discuss the importance of effective light harvesting and light outcoupling via optical management.Subsequently,the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods.Finally,we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.