An oral drug delivery system using proteinoid microspheres is discussed with respect to itsunique dependence on pH. It has been found that certain drugs such as insulin and heparin canbe encapsulated in proteinoid sph...An oral drug delivery system using proteinoid microspheres is discussed with respect to itsunique dependence on pH. It has been found that certain drugs such as insulin and heparin canbe encapsulated in proteinoid spheres at stomach pH's (1--3). These spheres also dissemble atintestinal pH's (6--7) releasing the drug for absorption. Using this technique low molecularweight heparin and human growth hormone have been orally delivered successfully to severalanimal species. Future work has been proposed to study the interaction and binding of thespecific drugs with synthesized oligopeptides.展开更多
Oral lesions are highly correlated with the occurrence and development of many diseases. In addition, the treatment of systemic diseases may aggravate oral focal infections, affect the life quality of patients, interf...Oral lesions are highly correlated with the occurrence and development of many diseases. In addition, the treatment of systemic diseases may aggravate oral focal infections, affect the life quality of patients, interfere with the treatment of systemic diseases, and even cause systemic infection in serious cases. Treatment strategies for systemic diseases may induce or aggravate oral local lesion infections. In specific, administration of oral anti-epileptic drugs and immunosuppressive drugs may induce gingivitis, radiotherapy or chemotherapy for malignant tumors may cause oral mucositis, long-term use of bisphosphonates for inhibition of tumor bone metastasis or prevention of osteoporosis may cause osteonecrosis of the jaw, and allogeneic hematopoietic stem cell transplantation that may cause oral rejection reactions.展开更多
Effective oral drugs and vaccines require high delivery efficiency across the gastrointestinal epithelia and protection of medically effective payloads(i.e.,immunogens)against gastric damage.In this study,hollowed nan...Effective oral drugs and vaccines require high delivery efficiency across the gastrointestinal epithelia and protection of medically effective payloads(i.e.,immunogens)against gastric damage.In this study,hollowed nanocarriers(NCs:silica nanospheres and gold nanocages)with poly-l-lysine(PLL)coating and mammalian orthoreovirus cell attachment proteinσ1 functionalization(NC-PLL-σ1)were explored as functional oral drug delivery vehicles(ODDVs).The transport of these ODDVs to mucosal lymphoid tissues could be facilitated by microfold cells(M-cells)mediated transcytosis(viaσ1-α2–3-linked sialic acids adherence)across gastrointestinal epithelia.PLL coating provided protection and slow-release of rhodamine 6 G(R6G),a model payload.The transport effectiveness of these ODDVs was tested on intestinal organoid monolayers in vitro.When compared with other experimental groups,the fully functionalized ODDV system(with PLL-σ1)demonstrated two significant advantages:a significantly higher transport efficiency(198%over blank control at 48 h);and protection of payloads which led to both better transport efficiency and extended-release of payloads(61%over uncoated carriers at 48 h).In addition,it was shown that the M cell presence in intestinal organoid monolayers(modulated by Rank L stimulation)was a determining factor on the transport efficiency of the ODDVs:more M-cells(induced by higher Rank L)in the organoid monolayers led to higher transport efficiency for ODDV-delivered model payload(R6G).The fully functionalized ODDVs showed great potential as effective oral delivery vehicles for drugs and vaccines.展开更多
Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantag...Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantages, attempts have been undertaken to complete an intravenous-to-oral conversion of targeted drug delivery. However, oral delivery of particulates to systemic circulation is highly challenging due to the biochemical aggressivity and immune exclusion in the gut that restrain absorption and access to the bloodstream. Little is known about the feasibility of targeted drug delivery via oral administration(oral targeting) to a remote site beyond the gastrointestinal tract. To this end, this review proactively contributes to a special dissection on the feasibility of oral targeting. We discussed the theoretical basis of oral targeting, the biological barriers of absorption, the in vivo fate and transport mechanisms of drug vehicles, and the effect of structural evolution of vehicles on oral targeting as well. At last, a feasibility analysis on oral targeting was performed based on the integration of currently available information. The innate defense of intestinal epithelium does not allow influx of more particulates into the peripheral blood through enterocytes. Therefore, limited evidence and lacking exact quantification of systemically exposed particles fail to support much success with oral targeting. Nevertheless, the lymphatic pathway may serve as a potentially alternative portal of peroral particles into the remote target sites via M-cell uptake.展开更多
Oral drugs have been widely used in clinical therapy, but their developments were severely limited by the side effects of drug exposure as well as the multiple biological barriers. In this study, we constructed a “cl...Oral drugs have been widely used in clinical therapy, but their developments were severely limited by the side effects of drug exposure as well as the multiple biological barriers. In this study, we constructed a “cluster bomb” oral drug delivery system (DOX@PFeL@L100) with core-shell structure to overcome the complex absorption barriers. The inner core termed as “bomb” that contains a lot of ultra-small diameter Fe_(3)O_(4) nanoparticles (DOX@PFeL NPs) loaded with doxorubicin (DOX) and modified with l-valine, which can efficiently penetrate the epithelial cells via PePT1 receptor mediated endocytosis. The outer shell of this “cluster bomb” is a layer of pH-sensitive polymer (Eudragit®L100) that can be served as a pH-responsive switch and effectively control the “bomb” release in the intestinal microenvironment to improve the antitumor efficiency by the Fenton like reaction of DOX and Fe^(2+)/Fe^(3+). This study demonstrates that the “cluster comb” oral drug delivery system can sequentially overcome the multiple biological barriers, providing a safe and effective approach for tumor therapy.展开更多
文摘An oral drug delivery system using proteinoid microspheres is discussed with respect to itsunique dependence on pH. It has been found that certain drugs such as insulin and heparin canbe encapsulated in proteinoid spheres at stomach pH's (1--3). These spheres also dissemble atintestinal pH's (6--7) releasing the drug for absorption. Using this technique low molecularweight heparin and human growth hormone have been orally delivered successfully to severalanimal species. Future work has been proposed to study the interaction and binding of thespecific drugs with synthesized oligopeptides.
文摘Oral lesions are highly correlated with the occurrence and development of many diseases. In addition, the treatment of systemic diseases may aggravate oral focal infections, affect the life quality of patients, interfere with the treatment of systemic diseases, and even cause systemic infection in serious cases. Treatment strategies for systemic diseases may induce or aggravate oral local lesion infections. In specific, administration of oral anti-epileptic drugs and immunosuppressive drugs may induce gingivitis, radiotherapy or chemotherapy for malignant tumors may cause oral mucositis, long-term use of bisphosphonates for inhibition of tumor bone metastasis or prevention of osteoporosis may cause osteonecrosis of the jaw, and allogeneic hematopoietic stem cell transplantation that may cause oral rejection reactions.
基金the National Institute of Biomedical Imaging and Bioengineering(NIBIB)Trailblazer Award(1R21EB032991-01)the Shanti V.Sitaraman,MD,PhD Inflammatory Bowel Diseases Young Investigator Award(No.439516)Dr.Yu would like to thank USDA-NIFA(grant no.2016-07802)and USDA-ARS(award no.019636-00001)for partially funding this research.
文摘Effective oral drugs and vaccines require high delivery efficiency across the gastrointestinal epithelia and protection of medically effective payloads(i.e.,immunogens)against gastric damage.In this study,hollowed nanocarriers(NCs:silica nanospheres and gold nanocages)with poly-l-lysine(PLL)coating and mammalian orthoreovirus cell attachment proteinσ1 functionalization(NC-PLL-σ1)were explored as functional oral drug delivery vehicles(ODDVs).The transport of these ODDVs to mucosal lymphoid tissues could be facilitated by microfold cells(M-cells)mediated transcytosis(viaσ1-α2–3-linked sialic acids adherence)across gastrointestinal epithelia.PLL coating provided protection and slow-release of rhodamine 6 G(R6G),a model payload.The transport effectiveness of these ODDVs was tested on intestinal organoid monolayers in vitro.When compared with other experimental groups,the fully functionalized ODDV system(with PLL-σ1)demonstrated two significant advantages:a significantly higher transport efficiency(198%over blank control at 48 h);and protection of payloads which led to both better transport efficiency and extended-release of payloads(61%over uncoated carriers at 48 h).In addition,it was shown that the M cell presence in intestinal organoid monolayers(modulated by Rank L stimulation)was a determining factor on the transport efficiency of the ODDVs:more M-cells(induced by higher Rank L)in the organoid monolayers led to higher transport efficiency for ODDV-delivered model payload(R6G).The fully functionalized ODDVs showed great potential as effective oral delivery vehicles for drugs and vaccines.
基金financially supported by Basic and Applied Basic Research Project of Guangzhou Science and Technology Plan (202201010743, China)Shanghai Municipal Commission of Science and Technology (19XD1400300 and 21430760800, China)。
文摘Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantages, attempts have been undertaken to complete an intravenous-to-oral conversion of targeted drug delivery. However, oral delivery of particulates to systemic circulation is highly challenging due to the biochemical aggressivity and immune exclusion in the gut that restrain absorption and access to the bloodstream. Little is known about the feasibility of targeted drug delivery via oral administration(oral targeting) to a remote site beyond the gastrointestinal tract. To this end, this review proactively contributes to a special dissection on the feasibility of oral targeting. We discussed the theoretical basis of oral targeting, the biological barriers of absorption, the in vivo fate and transport mechanisms of drug vehicles, and the effect of structural evolution of vehicles on oral targeting as well. At last, a feasibility analysis on oral targeting was performed based on the integration of currently available information. The innate defense of intestinal epithelium does not allow influx of more particulates into the peripheral blood through enterocytes. Therefore, limited evidence and lacking exact quantification of systemically exposed particles fail to support much success with oral targeting. Nevertheless, the lymphatic pathway may serve as a potentially alternative portal of peroral particles into the remote target sites via M-cell uptake.
基金supported by the National Natural Science Foundation of China (Nos. 81773276, 81972907, 81874304, and U1804183)Key Scientific Research Project (Education Department of Henan Province)(No. 20HASTIT049)Modern Analysis and Computer Center of Zhengzhou University。
文摘Oral drugs have been widely used in clinical therapy, but their developments were severely limited by the side effects of drug exposure as well as the multiple biological barriers. In this study, we constructed a “cluster bomb” oral drug delivery system (DOX@PFeL@L100) with core-shell structure to overcome the complex absorption barriers. The inner core termed as “bomb” that contains a lot of ultra-small diameter Fe_(3)O_(4) nanoparticles (DOX@PFeL NPs) loaded with doxorubicin (DOX) and modified with l-valine, which can efficiently penetrate the epithelial cells via PePT1 receptor mediated endocytosis. The outer shell of this “cluster bomb” is a layer of pH-sensitive polymer (Eudragit®L100) that can be served as a pH-responsive switch and effectively control the “bomb” release in the intestinal microenvironment to improve the antitumor efficiency by the Fenton like reaction of DOX and Fe^(2+)/Fe^(3+). This study demonstrates that the “cluster comb” oral drug delivery system can sequentially overcome the multiple biological barriers, providing a safe and effective approach for tumor therapy.