期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Orbit Fitting Based on Helmert Transformation 被引量:2
1
作者 王解先 《Geo-Spatial Information Science》 2009年第2期95-99,共5页
Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes... Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ignore the physical motion model of GPS satellites. Therefore, the trajectories may not fit the true orbits at the periods in between 2 sampling epochs. To solve this problem, we develop a dynamic approach, in which a model based on Helmert transformation is developed in GPS orbit fitting. In this orbit fitting approach, GPS orbits at sampling points are treated as pseudo-observations. Thereafter, Helmert transformation is built up between the pseudo-observations and dynamically integrated orbits at each epoch. A set of Helmert parameters together with corrections of GPS initial orbits are then modeled as unknown parameters. Results show that the final fit orbits have the same precision as the IGS final orbits. 展开更多
关键词 precise point positioning(PPP) IGS orbits orbit fitting Helmert transformation
原文传递
Reducing Influence of Gravity Model Error in Precise Orbit Determination of Low Earth Orbit Satellites 被引量:2
2
作者 GUO Jinlai HU Min ZHAO Qile GUO Daoyu 《Geo-Spatial Information Science》 2007年第2期105-110,共6页
Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effe... Based on the orbit integration and orbit fitting method, the influence of the characters of the gravity model, with different precisions, on the movement of low Earth orbit satellites was studied. The way and the effect of absorbing the influence of gravity model error on CHAMP and GRACE satellite orbits, using linear and periodical empirical acceleration models and the so-called "pseudo-stochastic pulses" model, were also analyzed. 展开更多
关键词 precise orbit determination gravity model orbit fitting
下载PDF
An optimal design of the broadcast ephemeris for LEO navigation augmentation systems 被引量:2
3
作者 Xueli Guo Lei Wang +3 位作者 Wenju Fu Yingbo Suo Ruizhi Chen Hongxing Sun 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第1期34-46,共13页
As the deployment of large Low Earth Orbiters(LEO)communication constellations,navigation from the LEO satellites becomes an emerging opportunity to enhance the existing satellite navigation systems.The LEO navigation... As the deployment of large Low Earth Orbiters(LEO)communication constellations,navigation from the LEO satellites becomes an emerging opportunity to enhance the existing satellite navigation systems.The LEO navigation augmentation(LEO-NA)systems require a centimeter to decimeter accuracy broadcast ephemeris to support high accuracy positioning applications.Thus,how to design the broadcast ephemeris becomes the key issue for the LEO-NA systems.In this paper,the temporal variation characteristics of the LEO orbit elements were analyzed via a spectrum analysis.A non-singular element set for orbit fitting was introduced to overcome the potential singularity problem of the LEO orbits.Based on the orbit characteristics,a few new parameters were introduced into the classical 16 parameter ephemeris set to improve the LEO orbit fitting accuracy.In order to identify the optimal parameter set,different parameter sets were tested and compared and the 21 parameters data set was recommended to make an optimal balance between the orbit accuracy and the bandwidth requirements.Considering the real-time broadcast ephemeris generation procedure,the performance of the LEO ephemeris based on the predicted orbit is also investigated.The performance of the proposed ephemeris set was evaluated with four in-orbit LEO satellites and the results indicate the proposed 21 parameter schemes improve the fitting accuracy by 87.4%subject to the 16 parameters scheme.The accuracy for the predicted LEO ephemeris is strongly dependent on the orbit altitude.For these LEO satellites operating higher than 500 km,10 cm signal-in-space ranging error(SISRE)is achievable for over 20 min prediction. 展开更多
关键词 LEO broadcast ephemeris orbit fitting leo navigation augmentation orbit prediction
原文传递
Calibration of GRACE on-board accelerometers for thermosphere density derivation
4
作者 Min Li Zhuo Lei +3 位作者 Wenwen Li Kecai Jiang Youcun Wang Qile Zhao 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第1期74-87,共14页
Low Earth Orbit satellite on-board accelerometers play an important role in improving our understanding of thermosphere density;however,the accelerometer-derived densities are subject to accelerometer calibration erro... Low Earth Orbit satellite on-board accelerometers play an important role in improving our understanding of thermosphere density;however,the accelerometer-derived densities are subject to accelerometer calibration errors.In this study,two different dynamic calibration schemes,the accelerometer parameter-incorporated orbit fitting and precise orbit determination(POD),are investigated with the Gravity Recovery And Climate Experiment(GRACE)satellite accelerometers for thermosphere density derivation during years 2004–2007(inclusive).We show that the GRACE accelerometer parametrization can be optimized by fixing scale coefficients and estimating biases every 60 min so that the orbit fitting and POD precision can be improved from 10 cm to 2 cm in the absence of empirical acceleration compensations and as a result the integrity of calibration parameters may be reserved.The orbit-fitting scheme demonstrates similar calibration precision with respect to POD.Their bias estimates in the along-track and cross-track components exhibit an offset within 0.1%and a standard deviation(STD)less than 0.3%.Correspondingly,a bias of 2.20%and a STD of 5.75%exists between their thermosphere density estimates.The orbit-fitting and POD-derived thermosphere densities are validated through the comparison against the results published by other institution.The comparison shows that either of them can achieve a precision level at 6%.To derive thermosphere density from the rapid-increasing amount of on-board accelerometer data sets,it is suggested to take full advantage of the orbit-fitting scheme due to its high efficiency as well as high precision. 展开更多
关键词 GRACE accelerometer calibration thermosphere density precise orbit determination orbit fit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部