期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
HJ-1C Satellite for Environmental and Disaster Monitoring Launched into Orbit
1
《Aerospace China》 2012年第4期23-23,共1页
A LM-2C launch vehicle was launched from the Taiyuan Satellite Launch Center on November 19, 2012, carrying HJ-1C, a technology demonstration satellite and the Fengniao satellite. The three satellites were placed to t... A LM-2C launch vehicle was launched from the Taiyuan Satellite Launch Center on November 19, 2012, carrying HJ-1C, a technology demonstration satellite and the Fengniao satellite. The three satellites were placed to the preset orbits respectively. Developed by DFH Satellite Co., Ltd., HJ-1C is a SAR Earth observation satellite for civilian use, which 展开更多
关键词 HJ-1C Satellite for environmental and Disaster Monitoring Launched into Orbit
下载PDF
A Simulator for Producing of High Flux Atomic Oxygen Beam by Using ECR Plasma Source 被引量:8
2
作者 Shuwang DUO, Meishuan LI and Yaming ZHANGShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期759-762,共4页
In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600... In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic oxygen exposure. The test results show that the atomic oxygen beam with flux of 1016-1017 atoms-cm-2·s-1 and energy of 5-30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1-10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications. 展开更多
关键词 Atomic oxygen Low earth orbit space environment ECR plasma MICROWAVE
下载PDF
The Erosion Effect of Kapton Film in a Ground-based Atomic Oxygen Irradiation Simulator 被引量:4
3
作者 王海斗 MA Guozheng +3 位作者 XU Binshi XING Zhiguo LI Guolu ZHANG Sen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1277-1282,共6页
In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film... In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film samples were subjected to AO beam generated by this facility. The Kapton films before and after AO exposure were analyzed comparatively using optical microscopy, scanning electronic microscopy, atomic force microscopy, high-precision microbalance, and X-ray photoelectron spectroscopy. The experimental results indicate that the transmittance of Kapton film will be reduced by AO irradiation notably, and its color deepens from pale yellow to brown. Surface roughness of the AO-treated sample is already increased obviously after AO irradiation for 5 hours, and exhibits a flannel-like appearance after 15 hours’ exposure in AO beam. The imide rings and benzene rings in kapton molecule are partially decomposed, and some new bonds form during AO irradiation. The mass loss of kapton film increases linearly with the increase of AO fluence, which is resulted from the formation of volatile products, such as CO, CO2 and NOx. The breakage in structure and degradation in properties of AO-treated Kapton film can be attributed to the integrated effect ofimpaction and oxidization of AO beam. The test results agree well with the space flight experimental data. 展开更多
关键词 space environment simulation low earth orbit atomic oxygen Kapton film erosion mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部