This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clo...This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 10778715)the National Key Basic Research Development Program of China (Grant No. 2007CB815502) the Scientific Research Fund of Hunan Provincial Educa-tion Department (Grant No. 08B039)
文摘This work aims to obtain a wide area differential method for geostationary orbit (GEO) constellation. A comparison between the dilution of precision (DOP) of four-dimensional (4D) calculation including sa- tellite clock errors and ephemeris errors and that of three-dimensional (3D) calculation only including ephemeris errors with the inverse positioning theory of GPS shows the conclusion that all the 3D PDOPs are greatly reduced. Based on this, a basic idea of correcting satellite clock errors and ephem- eris errors apart is put forward, and moreover, a specific method of separation is proposed. Satellite clock errors are separated in a master station with time synchronization, and all the remaining pseu- do-range errors after the satellite clock errors have been deducted are used to work out ephemeris corrections of all GEO satellites. By a comparative analysis of user positioning accuracy before and after differential, the wide area differential method is verified to be quite valid for GEO constellation.