Cymbidium(Orchidaceae:Epidendroideae),with around 60 species,is widely-distributed across Southeast Asia,providing a nice system for studying the processes that underlie patterns of biodiversity in the region.However,...Cymbidium(Orchidaceae:Epidendroideae),with around 60 species,is widely-distributed across Southeast Asia,providing a nice system for studying the processes that underlie patterns of biodiversity in the region.However,phylogenetic relationships of Cymbidium have not been well resolved,hampering investigations of species diversification and the biogeographical history of this genus.In this study,we construct a plastome phylogeny of 56 Cymbidium species,with four well-resolved major clades,which provides a framework for biogeographical and diversification rate analyses.Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern IndoBurma to the eastern Himalayas during the early Miocene(~21.10 Ma).It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene.Cymbidium spp.migration to the adjacent regions(Borneo,Philippines,and Sulawesi)primarily occurred during the Pliocene-Pleistocene period.Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin,and is positively associated with changes in temperature and monsoon intensity.Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification,after which the net diversification rate was reduced with the cooling climate after the middle Miocene.The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches,yet without a significant effect on diversification rates.This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.展开更多
The infrageneric classification currently in use for Cymbidium is based on gross morphology, with emphasis on the number of pollinia and state of fusion between lip and column. The sequences of nrDNA regions of 27...The infrageneric classification currently in use for Cymbidium is based on gross morphology, with emphasis on the number of pollinia and state of fusion between lip and column. The sequences of nrDNA regions of 27 species and 3 cultivars of Cymbidium and 3 outgroup species ( Eulophia graminea, Geodorum densiflorum, Amitostigma pinguiculum) were analyzed using PCR amplification and direct DNA sequencing. The phylogenetic trees generated from maximum parsimony analysis, however, show that the existing division among three subgenera (subgen. Cymbidium , subgen. Cyperorchis and subgen. Jensoa ) should be evaluated with more data. Subgenus Cyperorchis was not a monophyletic group, with the unexpected nesting of C. dayanum (subgen. Cymbidium ) within it; subgenus Jensoa also appeared paraphyletic, with C. lancifolium being the sister group to the remainder of the genus; species of subgen. Cymbidium appeared polyphyletic, being split into several clades and intermixed with the main subgen. Cyperorchis and subgen. Jensoa clades, respectively. However, because of the insufficiency of informative characters of ITS sequences, some of the clades identified, especially the major lineages of Cymbidium , received relatively low support; sectional delimitations were also not clear within each subgenus. Further study is needed for achieving a robust phylogeny of Cymbidium .展开更多
The floral morphology of Cymbidium ensifolium,a well-known orchid in China,has increasingly attracted horticultural and commercial attention.However,the molecular mechanisms that regulate flower development defects in...The floral morphology of Cymbidium ensifolium,a well-known orchid in China,has increasingly attracted horticultural and commercial attention.However,the molecular mechanisms that regulate flower development defects in C.ensifolium mutants are poorly understood.In this work,we examined a domesticated variety of C.ensifolium named‘CuiYuMuDan',or leaf-like flower mutant,which lacks typical characteristics of orchid floral organs but continues to produce sepal-to leaf-like structures along the inflorescence.We used comparative transcriptome analysis to identify 6234 genes that are differentially expressed between mutant and wild-type flowers.The majority of these differentially expre ssed genes are involved in membrane-building,anabolism regulation,and plant hormone signal transduction,implying that in the leaf-like mutant these processes play roles in the development of flower defects.In addition,we identified 152 differentially expre ssed transcription factors,including the bHLH,MYB,MIKC,and WRKY gene families.Moreover,we found 20 differentially expressed genes that are commonly involved in flower development,including MADS-box genes,CLAVATA3(CLV3),WUSCHEL(WUS),and PERIANTHIA(PAN).Among them,floral homeotic genes were further investigated by phylogenetic analysis and expression validation,which displayed distinctive spatial expression patterns and significant changes between the wild type and the mutant.This is the first report on the C.ensifolium leaf-like flower mutant transcriptome.Our results shed light on the molecular regulation of orchid flower development,and may improve our understanding of floral patterning regulation and advance molecular breeding of Chinese orchids.展开更多
Cymbidium,which includes approximately 80 species,is one of the most ornamental and cultivated orchid genera.However,a lack of markers and sparse sampling have posed great challenges to resolving the phylogenetic rela...Cymbidium,which includes approximately 80 species,is one of the most ornamental and cultivated orchid genera.However,a lack of markers and sparse sampling have posed great challenges to resolving the phylogenetic relationships within the genus.In the present study,we reconstructed the phylogenetic relationships by utilizing one nuclear DNA(nrITS)and seven plastid genes(rbcL,trnS,trnG,matK,trnL,psbA,and atpI)from 70 species(varieties)in Cymbidium.We also examined the occurrence of phylogenetic conflict between nuclear(nrITS)and plastid loci and investigated how phylogenetic conflict bears on taxonomic classification within the genus.We found that phylogenetic conflict and low support values may be explained by hybridization and a lack of informative characteristics.Our results do not support previous classification of the subgenera and sections within Cymbidium.Discordance between gene trees and network analysis indicate that reticulate evolution occurred in the genus Cymbidium.Overall,our study indicates that Cymbidium has undergone a complex evolution.展开更多
The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enou...The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.展开更多
Orchidaceae are one of the largest families of angiosperms in terms of species richness.In the last decade,numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae,leveraging data fro...Orchidaceae are one of the largest families of angiosperms in terms of species richness.In the last decade,numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae,leveraging data from plastid,mitochondrial and nuclear sources.These studies have provided new insights into the systematics,diversification and biogeography of Orchidaceae,establishing a robust foundation for future research.Nevertheless,pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks.To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae,we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015,delving into discussions on the underlying reasons for observed topological conflicts.We also provide a novel phylogenetic framework at the subtribal level.Furthermore,we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography,highlighting factors contributing to extensive speciation.Ultimately,we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.展开更多
Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying ...Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying the role of anthocyanins in mediating differences in color among varieties,liquid chromatography–tandem mass spectrometry was used to perform anthocyanin-targeted metabolomics of seven C.goeringii varieties,including‘Jin Qian Yuan’(JQY),‘Jin Xiu Qian Yuan’(JXQY),‘Miao Jiang Su Die’(MJSD),‘Qian Ming Su’(QMS),‘Shi Chan’(SC),and‘Yang Ming Su’(YMS),as well as the C.goeringii.We detected 64 anthocyanins,including cyanidins,delphinidins,malvidins,pelargonidins,peonidins,petunidins,procyanidins,and flavonoids.We identified six shared differentially accumulated metabolites(DAMs),including cyanidin-3-O-rutinoside,delphinidin-3-Osophoroside,pelargonidin-3-O-rutinoside,peonidin-3-O-(6-O-malonyl-beta-D-glucoside),peonidin-3-Osophoroside,and chalcone.Most DAMs were enriched in the anthocyanin biosynthesis pathway.Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed metabolites were significantly enriched in the anthocyanin biosynthesis pathway.Analysis of the content of differentially expressed metabolites indicated that peonidin-3-O-(6-O-malonyl-beta-D-glucoside)was the key metabolite underlying color differences among C.goeringii varieties.Procyanidin B2,pelargonidin-3-O-galactoside,and naringenin might also affect the color formation of JQY and QMS,SC,and MJSD,respectively.The results of this study shed light on the metabolic mechanism underlying flower color differences in C.goeringii at the molecular level.Our findings will aid future studies of the mechanism of flower color regulation in C.goeringii and have implications for the breeding of new varieties.展开更多
[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was exami...[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was examined using C.goeringii as the test material.[Results]The combination of burning red clay particles(15%),No.4 pine bark(15%),No.3 pine bark(60%),and perlite(10%),as well as the mixture of burning red clay particles(20%),No.4 pine bark(15%),No.3 pine bark(55%),and perlite(10%),yielded superior results.These formulations resulted in an increased number of new roots in C.goeringii,a reduction in the incidence of decayed roots,and enhancements in the number of tillers,new leaves,and flowers.[Conclusions]The selection of substrates may serve as a valuable reference for the cultivation of C.goeringii.展开更多
Effects of two media and fertilizer levels on the growth of Cymbidium hybridium were studied. Results demonstrated that peanut\|hull mixed sand (abbreviated as PH/S=1/1) medium had higher total porosity and larger...Effects of two media and fertilizer levels on the growth of Cymbidium hybridium were studied. Results demonstrated that peanut\|hull mixed sand (abbreviated as PH/S=1/1) medium had higher total porosity and larger air space and lower water holding capacity in comparison with sphagnum (abbreviated as SP) medium. Leaf growth rate, chlorophyll contents, fresh weight and photosynthetic rate change along with the changes of nitrogen concentrations of both SP and PH/S media. According to the investigation,when the nitrogen concentration was 222 75?mg·L -1 , the photosynthetic rate of SP\|medium reached the highest. The practical nitrogen content was 180 00?mg·L -1 for PH/S medium . The maximum of flower quantity (number per spike) was gotten by treating of N/P 2O 5/K 2O=10/30/20 on PH/S medium, and N/P 2O 5/K 2O=0/23/29 treatment was the lowest on PH/S medium. The differences in small flowers, stem length and flower quantity among the two media and the three fertilization methods reached significant at 0 05 level,respectively.展开更多
[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid ...[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource.展开更多
An intermediate between Cymbidium lancifolium Hook. and C.ensifolium (L.) Sw. is described as a new hybrid of them: C.× oblancifolium I. J. Liu et S. C. Chen. It is widespread in southern Sic huan Province in so...An intermediate between Cymbidium lancifolium Hook. and C.ensifolium (L.) Sw. is described as a new hybrid of them: C.× oblancifolium I. J. Liu et S. C. Chen. It is widespread in southern Sic huan Province in southwestern China . After being introduced into cultivation, it remains steady in its character an d indicates remarkable growth. It also exhibits great aesthetic values.展开更多
基金supported by grants from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31000000)The 14th Five-Year Plan of the Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences (XTBG-1450101)+3 种基金the Science and Technology Basic Resources Investigation Program of China (2021FY100200)the Key Basic Research Program of Yunnan Province,China (202101BC070003)the Yunnan Revitalization Talent Support Program"Young Talent"and"Innovation Team"ProjectsEcological and Environmental Conservation Program from the Department of Ecology and Environment of Yunnan Province。
文摘Cymbidium(Orchidaceae:Epidendroideae),with around 60 species,is widely-distributed across Southeast Asia,providing a nice system for studying the processes that underlie patterns of biodiversity in the region.However,phylogenetic relationships of Cymbidium have not been well resolved,hampering investigations of species diversification and the biogeographical history of this genus.In this study,we construct a plastome phylogeny of 56 Cymbidium species,with four well-resolved major clades,which provides a framework for biogeographical and diversification rate analyses.Molecular dating and biogeographical analyses show that Cymbidium likely originated in the region spanning northern IndoBurma to the eastern Himalayas during the early Miocene(~21.10 Ma).It then rapidly diversified into four major clades in East Asia within approximately a million years during the middle Miocene.Cymbidium spp.migration to the adjacent regions(Borneo,Philippines,and Sulawesi)primarily occurred during the Pliocene-Pleistocene period.Our analyses indicate that the net diversification rate of Cymbidium has decreased since its origin,and is positively associated with changes in temperature and monsoon intensity.Favorable hydrothermal conditions brought by monsoon intensification in the early Miocene possibly contributed to the initial rapid diversification,after which the net diversification rate was reduced with the cooling climate after the middle Miocene.The transition from epiphytic to terrestrial habits may have enabled adaptation to cooler environments and colonization of northern niches,yet without a significant effect on diversification rates.This study provides new insights into how monsoon activity and temperature changes affected the diversification dynamics of plants in Southeast Asia.
文摘The infrageneric classification currently in use for Cymbidium is based on gross morphology, with emphasis on the number of pollinia and state of fusion between lip and column. The sequences of nrDNA regions of 27 species and 3 cultivars of Cymbidium and 3 outgroup species ( Eulophia graminea, Geodorum densiflorum, Amitostigma pinguiculum) were analyzed using PCR amplification and direct DNA sequencing. The phylogenetic trees generated from maximum parsimony analysis, however, show that the existing division among three subgenera (subgen. Cymbidium , subgen. Cyperorchis and subgen. Jensoa ) should be evaluated with more data. Subgenus Cyperorchis was not a monophyletic group, with the unexpected nesting of C. dayanum (subgen. Cymbidium ) within it; subgenus Jensoa also appeared paraphyletic, with C. lancifolium being the sister group to the remainder of the genus; species of subgen. Cymbidium appeared polyphyletic, being split into several clades and intermixed with the main subgen. Cyperorchis and subgen. Jensoa clades, respectively. However, because of the insufficiency of informative characters of ITS sequences, some of the clades identified, especially the major lineages of Cymbidium , received relatively low support; sectional delimitations were also not clear within each subgenus. Further study is needed for achieving a robust phylogeny of Cymbidium .
基金grants from National Key R&D Program(2018YFD1000404)the National Natural Science Foundation of China(31672184)+3 种基金the Natural Science Foundation of Guangdong Province(2017A030312004)Guangzhou Science and Technology Project(201707010307,201904020026)Innovation Team of Modern Agricultural Industry Technology System in Guangdong Province(2019KJ121)the Guangdong Academy of Agricultural Sciences Discipline Team Construction Project(201612TD,2017A070702008,201721).
文摘The floral morphology of Cymbidium ensifolium,a well-known orchid in China,has increasingly attracted horticultural and commercial attention.However,the molecular mechanisms that regulate flower development defects in C.ensifolium mutants are poorly understood.In this work,we examined a domesticated variety of C.ensifolium named‘CuiYuMuDan',or leaf-like flower mutant,which lacks typical characteristics of orchid floral organs but continues to produce sepal-to leaf-like structures along the inflorescence.We used comparative transcriptome analysis to identify 6234 genes that are differentially expressed between mutant and wild-type flowers.The majority of these differentially expre ssed genes are involved in membrane-building,anabolism regulation,and plant hormone signal transduction,implying that in the leaf-like mutant these processes play roles in the development of flower defects.In addition,we identified 152 differentially expre ssed transcription factors,including the bHLH,MYB,MIKC,and WRKY gene families.Moreover,we found 20 differentially expressed genes that are commonly involved in flower development,including MADS-box genes,CLAVATA3(CLV3),WUSCHEL(WUS),and PERIANTHIA(PAN).Among them,floral homeotic genes were further investigated by phylogenetic analysis and expression validation,which displayed distinctive spatial expression patterns and significant changes between the wild type and the mutant.This is the first report on the C.ensifolium leaf-like flower mutant transcriptome.Our results shed light on the molecular regulation of orchid flower development,and may improve our understanding of floral patterning regulation and advance molecular breeding of Chinese orchids.
基金funded by The National Key Research and Development Program of China(Nos.2018YFD1000401 and 2018YFD1000400)the Natural Science Foundation of Guangdong Province(No.2017A030312004)the Science and Technology Plan Project of Shenzhen(No.JCYJ20170817151501595).
文摘Cymbidium,which includes approximately 80 species,is one of the most ornamental and cultivated orchid genera.However,a lack of markers and sparse sampling have posed great challenges to resolving the phylogenetic relationships within the genus.In the present study,we reconstructed the phylogenetic relationships by utilizing one nuclear DNA(nrITS)and seven plastid genes(rbcL,trnS,trnG,matK,trnL,psbA,and atpI)from 70 species(varieties)in Cymbidium.We also examined the occurrence of phylogenetic conflict between nuclear(nrITS)and plastid loci and investigated how phylogenetic conflict bears on taxonomic classification within the genus.We found that phylogenetic conflict and low support values may be explained by hybridization and a lack of informative characteristics.Our results do not support previous classification of the subgenera and sections within Cymbidium.Discordance between gene trees and network analysis indicate that reticulate evolution occurred in the genus Cymbidium.Overall,our study indicates that Cymbidium has undergone a complex evolution.
文摘The Annapurna Conservation Area (ACA), the first conservation area and the largest protected area (PA) in Nepal, is incredibly rich in biodiversity. Notwithstanding this, orchids in the ACA have not been explored enough yet thus making the need for ambitious research to be carried out. Previous study only included 81 species of orchids within ACA. This study aims to update the record of species and genera richness in the ACA. In total 198 species of orchids, belonging to 67 genera (40% and 62% of the total recorded orchid species and genera in Nepal) has been recorded in ACA. This represents an increase of 144% in species and 56% in genera over the previous data. Out of the 198 species, 99 were epiphytes, 6 were holomycotrophic and 93 were terrestrial. Among the 67 genera, Bulbophyllum (17) species were dominant, followed by Dendrobium (16), Herminium (10), Coelogyne, Plantanthera (9 each), Eria, Habenaria, Oberonia (8 each), Calanthe (7), and Liparis (6). Fifty-six species were found to be ornamentally significant and 85 species medicinally significant.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA0420203)the National Natural Science Foundation of China (32270214 to XJ)China's National Basic Science and Technology Program (2018FY100801)。
文摘Orchidaceae are one of the largest families of angiosperms in terms of species richness.In the last decade,numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae,leveraging data from plastid,mitochondrial and nuclear sources.These studies have provided new insights into the systematics,diversification and biogeography of Orchidaceae,establishing a robust foundation for future research.Nevertheless,pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks.To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae,we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015,delving into discussions on the underlying reasons for observed topological conflicts.We also provide a novel phylogenetic framework at the subtribal level.Furthermore,we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography,highlighting factors contributing to extensive speciation.Ultimately,we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
基金supported by the Study on Resource Collection and New Variety Breeding of the Guizhou Mountainous Characteristic Flower C.goeringii(QianKeHe[2022]General 107)the Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China,Guizhou Academy of Forestry.
文摘Cymbidium goeringii is an economically important ornamental plant,and flower color is one of the main features of C.goeringii that contributes to its high economic value.To clarify the molecular mechanisms underlying the role of anthocyanins in mediating differences in color among varieties,liquid chromatography–tandem mass spectrometry was used to perform anthocyanin-targeted metabolomics of seven C.goeringii varieties,including‘Jin Qian Yuan’(JQY),‘Jin Xiu Qian Yuan’(JXQY),‘Miao Jiang Su Die’(MJSD),‘Qian Ming Su’(QMS),‘Shi Chan’(SC),and‘Yang Ming Su’(YMS),as well as the C.goeringii.We detected 64 anthocyanins,including cyanidins,delphinidins,malvidins,pelargonidins,peonidins,petunidins,procyanidins,and flavonoids.We identified six shared differentially accumulated metabolites(DAMs),including cyanidin-3-O-rutinoside,delphinidin-3-Osophoroside,pelargonidin-3-O-rutinoside,peonidin-3-O-(6-O-malonyl-beta-D-glucoside),peonidin-3-Osophoroside,and chalcone.Most DAMs were enriched in the anthocyanin biosynthesis pathway.Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed metabolites were significantly enriched in the anthocyanin biosynthesis pathway.Analysis of the content of differentially expressed metabolites indicated that peonidin-3-O-(6-O-malonyl-beta-D-glucoside)was the key metabolite underlying color differences among C.goeringii varieties.Procyanidin B2,pelargonidin-3-O-galactoside,and naringenin might also affect the color formation of JQY and QMS,SC,and MJSD,respectively.The results of this study shed light on the metabolic mechanism underlying flower color differences in C.goeringii at the molecular level.Our findings will aid future studies of the mechanism of flower color regulation in C.goeringii and have implications for the breeding of new varieties.
基金Supported by Spark Program of Fujian Province(2021S0055).
文摘[Objectives]The paper was to explore the impact of different cultivation substrates on the growth of Cymbidium goeringii.[Methods]The impact of 13 distinct cultivation substrates on the growth of C.goeringii was examined using C.goeringii as the test material.[Results]The combination of burning red clay particles(15%),No.4 pine bark(15%),No.3 pine bark(60%),and perlite(10%),as well as the mixture of burning red clay particles(20%),No.4 pine bark(15%),No.3 pine bark(55%),and perlite(10%),yielded superior results.These formulations resulted in an increased number of new roots in C.goeringii,a reduction in the incidence of decayed roots,and enhancements in the number of tillers,new leaves,and flowers.[Conclusions]The selection of substrates may serve as a valuable reference for the cultivation of C.goeringii.
文摘Effects of two media and fertilizer levels on the growth of Cymbidium hybridium were studied. Results demonstrated that peanut\|hull mixed sand (abbreviated as PH/S=1/1) medium had higher total porosity and larger air space and lower water holding capacity in comparison with sphagnum (abbreviated as SP) medium. Leaf growth rate, chlorophyll contents, fresh weight and photosynthetic rate change along with the changes of nitrogen concentrations of both SP and PH/S media. According to the investigation,when the nitrogen concentration was 222 75?mg·L -1 , the photosynthetic rate of SP\|medium reached the highest. The practical nitrogen content was 180 00?mg·L -1 for PH/S medium . The maximum of flower quantity (number per spike) was gotten by treating of N/P 2O 5/K 2O=10/30/20 on PH/S medium, and N/P 2O 5/K 2O=0/23/29 treatment was the lowest on PH/S medium. The differences in small flowers, stem length and flower quantity among the two media and the three fertilization methods reached significant at 0 05 level,respectively.
基金Research supported by national science and technology basic conditions platform program(2005DKA21000-5-63).~~
文摘[Objective] The aim of the research was to establish asymbiotic germination and low-temperature in vitro conservation technique system of Cymbidium dayanum by using plant tissue culture technique to realize its rapid propagation and long-term conservation in vitro. [Method] With mature seeds of C. dayanum as explants, different media were selected to establish asymbiotic germination technique system. With protocorms as materials, conservation, resumptive proliferation and plant regeneration conditions were selected to establish low-temperature in vitro conservation technique system preliminarily. [Result] Mature seeds of C. dayanum could germinate after cultured 90 days on MS media as well as "Hyponex 1" media. The germination rate reached more than 98%. Protocorms inoculated in "Hyponex 1" media could be conserved continuously at 5 ℃ in dark for more than 18 months and the survival rate could reach 90%. Conserved protocorms could realize resumptive preliferation culture both on 1/2 MS and "Hyponex 1" media. The seed- ling-strengthening and rooting media were 1/2 MS media. [Conclusion] This research provided practical basis for in vitro conservation and rapid propagation of C. dayanum germplasm resource.
文摘An intermediate between Cymbidium lancifolium Hook. and C.ensifolium (L.) Sw. is described as a new hybrid of them: C.× oblancifolium I. J. Liu et S. C. Chen. It is widespread in southern Sic huan Province in southwestern China . After being introduced into cultivation, it remains steady in its character an d indicates remarkable growth. It also exhibits great aesthetic values.