There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle th...There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.展开更多
In this paper, we propose two new explicit Almost Runge-Kutta (ARK) methods, ARK3 (a three stage third order method, i.e., s = p = 3) and ARK34 (a four-stage third-order method, i.e., s = 4, p = 3), for the numerical ...In this paper, we propose two new explicit Almost Runge-Kutta (ARK) methods, ARK3 (a three stage third order method, i.e., s = p = 3) and ARK34 (a four-stage third-order method, i.e., s = 4, p = 3), for the numerical solution of initial value problems (IVPs). The methods are derived through the application of order and stability conditions normally associated with Runge-Kutta methods;the derived methods are further tested for consistency and stability, a necessary requirement for convergence of any numerical scheme;they are shown to satisfy the criteria for both consistency and stability;hence their convergence is guaranteed. Numerical experiments carried out further justified the efficiency of the methods.展开更多
We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presentin...We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.展开更多
This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann con...This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.展开更多
In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and pro...In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and prove their spectral accuracy by using the recent results on the Jacobi quasi-orthogonal approximation. Numerical results demonstrate the high accuracy of suggested algorithm, which also works well even for oscillating solutions.展开更多
Multivariate likelihood ratio order of order statistics conditioned on both the right tail and the left tail are built. These results strengthen and generalize those conclusions in terms of the univariate likelihood r...Multivariate likelihood ratio order of order statistics conditioned on both the right tail and the left tail are built. These results strengthen and generalize those conclusions in terms of the univariate likelihood ratio order by Khaledi and Shaked (2007), Li and Zhao (2006), Hu, et al. (2006), and Hu, Jin, and Khaledi (2007).展开更多
Two classes of multivariate DMRL distributions and a class of multivariate NBUE distributions are introduced in this paper by using conditional stochastic order.That is, a random vector belongs to a multivariate DMRL ...Two classes of multivariate DMRL distributions and a class of multivariate NBUE distributions are introduced in this paper by using conditional stochastic order.That is, a random vector belongs to a multivariate DMRL class of life distributions if its residual life(defined as a conditional random vector)is decreasing in time under convex or linear order.Some conservation properties of these classes are studied.展开更多
In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accura...In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.展开更多
We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems(SHS).Three types of systems,SHS with multiplicative noise,special separable Hamiltonians and multiple additive noise,respe...We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems(SHS).Three types of systems,SHS with multiplicative noise,special separable Hamiltonians and multiple additive noise,respectively,are considered in this paper.Stochastic Runge-Kutta(SRK)methods for these systems are investigated,and the corresponding conditions for SRK methods to preserve the symplectic property are given.Based on the weak/strong order and symplectic conditions,some effective schemes are derived.In particular,using the algebraic computation,we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise,and two classes of high strong order symplectic Runge-Kutta methods for SHS with multiple multiplicative and additive noise,respectively.The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.展开更多
文摘There is a large class of problems in the field of fluid structure interaction where higher-order boundary conditions arise for a second-order partial differential equation. Various methods are being used to tackle these kind of mixed boundary-value problems associated with the Laplace’s equation (or Helmholtz equation) arising in the study of waves propagating through solids or fluids. One of the widely used methods in wave structure interaction is the multipole expansion method. This expansion involves a general combination of a regular wave, a wave source, a wave dipole and a regular wave-free part. The wave-free part can be further expanded in terms of wave-free multipoles which are termed as wave-free potentials. These are singular solutions of Laplace’s equation or two-dimensional Helmholz equation. Construction of these wave-free potentials and multipoles are presented here in a systematic manner for a number of situations such as two-dimensional non-oblique and oblique waves, three dimensional waves in two-layer fluid with free surface condition with higher order partial derivative are considered. In particular, these are obtained taking into account of the effect of the presence of surface tension at the free surface and also in the presence of an ice-cover modelled as a thin elastic plate. Also for limiting case, it can be shown that the multipoles and wave-free potential functions go over to the single layer multipoles and wave-free potential.
文摘In this paper, we propose two new explicit Almost Runge-Kutta (ARK) methods, ARK3 (a three stage third order method, i.e., s = p = 3) and ARK34 (a four-stage third-order method, i.e., s = 4, p = 3), for the numerical solution of initial value problems (IVPs). The methods are derived through the application of order and stability conditions normally associated with Runge-Kutta methods;the derived methods are further tested for consistency and stability, a necessary requirement for convergence of any numerical scheme;they are shown to satisfy the criteria for both consistency and stability;hence their convergence is guaranteed. Numerical experiments carried out further justified the efficiency of the methods.
基金a post-doctoral fellowship within the Department of Mathematics of the University of Haifa and by FAPERJ (Grant No.E-26/152.107/1990-Bolsa)Partially supported by CNP_q (Grant No.301280/86).Partially supported by CNP_q (Grant No.3002748/2002-4)
文摘We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.
文摘This paper is devoted to study of an iterative procedure for domain decomposition method of second order elliptic problem with mixed boundary conditions (i.e., Dirichlet condition on a part of boundary and Neumann condition on the another part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4] considered a similar approach, which is extended to more complex problem in this paper.
文摘In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and prove their spectral accuracy by using the recent results on the Jacobi quasi-orthogonal approximation. Numerical results demonstrate the high accuracy of suggested algorithm, which also works well even for oscillating solutions.
基金This research is supported by the National Natural Science Foundations of China under Grant No. 10771090. Authors thank Professor Xiaohu Li for providing us insightful instruction and his encouraging comments on this manuscript.
文摘Multivariate likelihood ratio order of order statistics conditioned on both the right tail and the left tail are built. These results strengthen and generalize those conclusions in terms of the univariate likelihood ratio order by Khaledi and Shaked (2007), Li and Zhao (2006), Hu, et al. (2006), and Hu, Jin, and Khaledi (2007).
文摘Two classes of multivariate DMRL distributions and a class of multivariate NBUE distributions are introduced in this paper by using conditional stochastic order.That is, a random vector belongs to a multivariate DMRL class of life distributions if its residual life(defined as a conditional random vector)is decreasing in time under convex or linear order.Some conservation properties of these classes are studied.
基金The work of the first author is supported in part by NSF of China No.11171227Research Fund for young teachers of Jiangsu Normal University No.11XLR27+3 种基金and Priority Academic Program Development of Jiangsu Higher Education Institutions.The work of the second author is supported in part by NSF of China No.11171227Fund for Doctoral Authority of China No.20123127110001Fund for Einstitute of Shanghai Universities No.E03004and Leading Academic Discipline Project of Shanghai Municipal Education Commission No.J50101.
文摘In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.
基金This work was supported by NSFC(91130003)The first authors is also supported by NSFC(11101184,11271151)+1 种基金the Science Foundation for Young Scientists of Jilin Province(20130522101JH)The second and third authors are also supported by NSFC(11021101,11290142).The authors would like to thank anonymous reviewers for careful reading and invaluable suggestions,which greatly improved the presentation of the paper.
文摘We study the construction of symplectic Runge-Kutta methods for stochastic Hamiltonian systems(SHS).Three types of systems,SHS with multiplicative noise,special separable Hamiltonians and multiple additive noise,respectively,are considered in this paper.Stochastic Runge-Kutta(SRK)methods for these systems are investigated,and the corresponding conditions for SRK methods to preserve the symplectic property are given.Based on the weak/strong order and symplectic conditions,some effective schemes are derived.In particular,using the algebraic computation,we obtained two classes of high weak order symplectic Runge-Kutta methods for SHS with a single multiplicative noise,and two classes of high strong order symplectic Runge-Kutta methods for SHS with multiple multiplicative and additive noise,respectively.The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.