期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Chaos in the sense of Li-Yorke and the order of the inverse limit space
1
作者 Jie Lü Xiangdong Ye 《Chinese Science Bulletin》 SCIE EI CAS 1999年第11期988-992,共5页
Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known th... Let l=[0,1] and ω<sub>0</sub> be the first limit ordinal number. Assume that f:l→l is continuous, piece-wise monotone and the set of periods of f is {2<sup>i</sup>: i∈{0}∪N}. It is known that the order of (l, f) is ω<sub>0</sub> or ω<sub>0</sub> + 1. It is shown that the order of the inverse limit space (l, f) is ω<sub>0</sub> (resp. ω<sub>0</sub> + 1) if and only if f is not (resp. is) chaotic in the sense of Li-Yorke. 展开更多
关键词 inverse limit space order of hereditarily decomposable chainable continua CHAOS in the SENSE of LI-YORKE REGULAR RECURRENT point.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部