In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various discip...In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.展开更多
In this paper, a new probability distribution is proposed by using Marshall and Olkin transformation. Some of its properties such as moments, moment generating function, order statistics and reliability functions are ...In this paper, a new probability distribution is proposed by using Marshall and Olkin transformation. Some of its properties such as moments, moment generating function, order statistics and reliability functions are derived. The method of </span><span style="font-family:Verdana;">maximum likelihood is used to estimate the model parameters. The graphs of the reliability function and hazard rate function are plotted by taken some values of the parameters. Three real life applications are introduced to compare the behaviour of the new distribution with other distributions.展开更多
In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and...In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any sample size.展开更多
A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span...A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span><span style="font-family:Verdana;">{Logistic} distribution is introduced and studied. The new distribution extends the exponentiated Weibull distribution with additional parameters and bimodal densities. Some new and earlier distributions formed the sub-models of the proposed distribution. The mathematical properties of the new distribution including expressions for the hazard function, survival function, moments, order statistics, mean deviation and absolute mean deviation from the mean, and entropy were derived. Monte Carlo simulation study was carried out to assess the finite sample behavior of the parameter estimates by maximum likelihood estimation approach. The superiority of the new generalized exponentiated Weibull distribution over some competing distributions was proved empirically using the fitted results from </span><span style="font-family:Verdana;">three</span><span style="font-family:Verdana;"> real life datasets.展开更多
文摘In probability theory, the mixture distribution M has a density function for the collection of random variables and weighted by w<sub>i</sub> ≥ 0 and . These mixed distributions are used in various disciplines and aim to enrich the collection distribution to more parameters. A more general mixture is derived by Kadri and Halat, by proving the existence of such mixture by w<sub>i</sub> ∈ R, and maintaining . Kadri and Halat provided many examples and applications for such new mixed distributions. In this paper, we introduce a new mixed distribution of the Generalized Erlang distribution, which is derived from the Hypoexponential distribution. We characterize this new distribution by deriving simply closed expressions for the related functions of the probability density function, cumulative distribution function, moment generating function, reliability function, hazard function, and moments.
文摘In this paper, a new probability distribution is proposed by using Marshall and Olkin transformation. Some of its properties such as moments, moment generating function, order statistics and reliability functions are derived. The method of </span><span style="font-family:Verdana;">maximum likelihood is used to estimate the model parameters. The graphs of the reliability function and hazard rate function are plotted by taken some values of the parameters. Three real life applications are introduced to compare the behaviour of the new distribution with other distributions.
文摘In the present paper we derived, with direct method, the exact expressions for the sampling probability density function of the Gini concentration ratio for samples from a uniform population of size n = 6, 7, 8, 9 and 10. Moreover, we found some regularities of such distributions valid for any sample size.
文摘A new generalized exponentiated Weibull model called Gumbel-exponentiated </span><span style="font-family:Verdana;">Weibull</span><span style="font-family:""> </span><span style="font-family:Verdana;">{Logistic} distribution is introduced and studied. The new distribution extends the exponentiated Weibull distribution with additional parameters and bimodal densities. Some new and earlier distributions formed the sub-models of the proposed distribution. The mathematical properties of the new distribution including expressions for the hazard function, survival function, moments, order statistics, mean deviation and absolute mean deviation from the mean, and entropy were derived. Monte Carlo simulation study was carried out to assess the finite sample behavior of the parameter estimates by maximum likelihood estimation approach. The superiority of the new generalized exponentiated Weibull distribution over some competing distributions was proved empirically using the fitted results from </span><span style="font-family:Verdana;">three</span><span style="font-family:Verdana;"> real life datasets.