The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations t...The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.展开更多
Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs...Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.展开更多
We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian i...We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.展开更多
New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer...New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer chains. The relationship between the intramolecular orientational order parameter and the molecular geometrical parameters such as the bond angle, the bond rotational angle and the rotational potential energy of chemical bonds was deduced. A significant even-odd oscillation of the intramolecular orientational order parameter of LCPs with different length of flexible spacer was found and rationally related to even-odd zig-zag manner of transition properties The verification and application of the theory are also discussed. The isotropic transition temperature predicted by the theory is shown to be in favourable agreement with the experiments.展开更多
The equations of the second and third order derivative curves of time with respect to potential for a reversible process in adsorption chronopotentiometry are derived and experimentally verified.
This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy ...This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.展开更多
This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In ...This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.展开更多
To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer oper...To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also results in small adjustments of the buffer effect.The effectiveness of the grey model(GM(1,1)) with the fractional order buffer operator is validated by six cases.展开更多
The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but w...The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.展开更多
The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the...The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.展开更多
A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal ...A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.展开更多
Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liqu...Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.展开更多
This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a M...This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a Mode-I crack problem. The fractional order theory of thermoelasticity is used to obtain the analytical solutions for displacement components, force stresses, and temperature. The boundary of the crack is subjected to a prescribed stress distribution and temperature. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The variations of the considered variables with the horizontal distance are illustrated graphically. Some particular cases are also discussed in the context of the problem. Effects of the fractional parameter, reinforcement, and rotation on the varia- tions of different field quantities inside the elastic medium are analyzed graphically. Comparisons are made between the results in the presence and those in the absence of fiber-reinforcing, rotating and fractional parameters.展开更多
To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differentia...To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differential equations for free vibration and buckling are formulated using the Hamilton's principle, the natural frequencies and axial forces are thus analytically obtained by Laplace transform technique. The analytical results are verified through the comparison with those of several other models common in use; and the presented model is found to be a finer one than the Reddy's. A parametric study is also performed to investigate the effects of geometry and material parameters.展开更多
The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is a...The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is also addressed. Several distributed and localized loading conditions are considered. Loads act on the top of the plate. Bi-sinusoidal and uniform loads are taken into account for distributed loadings, while stepwise constant centric and off-centric loadings are addressed in the case of localized loadings. Analysis is performed considering plates whose length-to-thickness ratio a/h can be as high as 100 (thin plates) and as low as 2 (very thick plates). Results are obtained via several 2D plate models. Classical theories (CTs) and higher order models are applied. Those theories are based on polynomial approximation of the displacement field. Among the higher order theories (HOTs) HOTsa models account for the transverse shear deformations, while HOTs models account for both transverse shear and transverse normal deformations. LHOTs represent a local application of the higher order theories. A layerwise approach is thus assumed: by means of mathematical interfaces, the plate is considered to be made of several fictitious layers. The exact 3D solution is presented in order to determine the accuracy of the results obtained via the 2D models. In this way a hierarchy among the 2D theories is established. CTs provide highly accurate results for a/h greater than 10 in the case of distributed loadings and greater than 20 for localized loadings. Results obtained via HOTs are highly accurate in the case of very thick plates for bi-sinusoidal and centric loadings. In the case of uniform and off-centric loadings a high gradient is present in the neighborhood of the plate top. In those cases, LHOTs yield results that match the exact solution.展开更多
A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also...A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.展开更多
Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem....Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem. The present work explores the use of technique for order performance by similarity to ideal solution(TOPSIS) with fuzzy set theory to select best primary crusher for Golegohar Iron Mine in Iran. Gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impact crusher, hammer mill and feeder breaker crushers have been considered as alternatives. Also, the capacity, feed size, product size, rock compressive strength, abrasion index and application of primary crusher for mobile plants were considered as criteria for solution of this MCDM problem. To determine the order of the alternatives, closeness coefficient is defined by calculating the distances to the fuzzy positive ideal solution(FPIS) and fuzzy negative ideal solution(FNIS). Results of our work based on fuzzy TOPSIS method show that the gyratory is the best primary crusher for the studied mine.展开更多
A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation...A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.展开更多
The application of behavioural theory to corporate finance is now attracting the attention of theoretical work. However, very little rigorous empirical work has been carried out to analyse the desirability of behaviou...The application of behavioural theory to corporate finance is now attracting the attention of theoretical work. However, very little rigorous empirical work has been carried out to analyse the desirability of behavioural biases in relation to financing decisions. The main results argue that managerial overconfidence provides an alternative determinant of capital structure. However, many questions remain to be explored, related to overconfidence measures and positive/negative effects of managerial overconfidence. Our paper assumes that the combination of financial theory and behavioural theory leads to better explanatory power. We follow two complementary goals. Firstly, we examine the dynamic trade-off model introducing a behavioural perspective. Secondly, we propose extending the pecking order analysis to incorporate overconfidence in Shyam-Sunder and Myers's model. We use a sample of Tunisian firms and employ panel-data estimation procedures to account for endogeneity and spurious correlation issues. Our results confirm the assumption that manager confidence is positively related to debt level. Overconfident managers underestimate the probability of financial distress and will choose higher levels of debt than they would if they were "rational".展开更多
The thermal shock problems involved with fractional order generalized theory is studied by an analytical method. The asymptotic solutions for thermal responses induced by transient thermal shock are derived by means o...The thermal shock problems involved with fractional order generalized theory is studied by an analytical method. The asymptotic solutions for thermal responses induced by transient thermal shock are derived by means of the limit theorem of Laplace transform. An infinite solid with a cylindrical cavity subjected to a thermal shock at its inner boundary is studied. The propagation of thermal wave and thermal elastic wave, as well as the distributions of displacement, temperature and stresses are obtained from these asymptotic solutions. The investigation on the effect of fractional order parameter on the propagation of two waves is also conducted.展开更多
基金supported by the National Basic Research Program of China (No.2006CB 601202)NPU Foundation for Fundamental Research, the Doctorate Foundation of Northwestern Polytechnical University (No.CX200810)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (No.GZ0802)
文摘The transient thermal response of a thick orthotropic hollow cylinder with finite length is studied by a high order shell theory. The radial and axial displacements are assumed to have quadratic and cubic variations through the thickness, respectively. It is important that the radial stress is approximated by a cubic expansion satisfying the boundary conditions at the inner and outer surfaces, and the corresponding strain should be least-squares compatible with the strain derived from the strain-displacement relation. The equations of motion are derived from the integration of the equilibrium equations of stresses, which are solved by precise integration method (PIM). Numerical results are.obtained, and compared with FE simulations and dynamic thermo-elasticity solutions, which indicates that the high order shell theory is capable of predicting the transient thermal response of an orthotropic (or isotropic) thick hollow cylinder efficiently, and for the detonation tube of actual pulse detonation engines (PDE) heated continuously, the thermal stresses will become too large to be neglected, which are not like those in the one time experiments with very short time.
文摘Recently application of functionally graded materials(FGMs) have attracted a great deal of interest. These materials are composed of various materials with different micro-structures which can vary spatially in FGMs. Such composites with varying thickness and non-uniform pressure can be used in the aerospace engineering. Therefore, analysis of such composite is of high importance in engineering problems. Thermoelastic analysis of functionally graded cylinder with variable thickness under non-uniform pressure is considered. First order shear deformation theory and total potential energy approach is applied to obtain the governing equations of non-homogeneous cylinder. Considering the inner and outer solutions, perturbation series are applied to solve the governing equations. Outer solution for out of boundaries and more sensitive variable in inner solution at the boundaries are considered. Combining of inner and outer solution for near and far points from boundaries leads to high accurate displacement field distribution. The main aim of this paper is to show the capability of matched asymptotic solution for different non-homogeneous cylinders with different shapes and different non-uniform pressures. The results can be used to design the optimum thickness of the cylinder and also some properties such as high temperature residence by applying non-homogeneous material.
文摘We report our systematic construction of the lattice Hamiltonian model of topological orders on open surfaces, with explicit boundary terms. We do this mainly for the Levin-Wen string-net model. The full Hamiltonian in our approach yields a topologically protected, gapped energy spectrum, with the corresponding wave functions robust under topology-preserving transformations of the lattice of the system. We explicitly present the wavefunctions of the ground states and boundary elementary excitations. The creation and hopping operators of boundary quasi-particles are constructed. It is found that given a bulk topological order, the gapped boundary conditions are classified by Frobenius algebras in its input data. Emergent topological properties of the ground states and boundary excitations are characterized by (bi-) modules over Frobenius algebras.
文摘New concepts such as intramolecular orientational order parameter and corresponding model as well as theory were proposed to describe the intramolecular orientation of mesogenic units in the liquid crystalline polymer chains. The relationship between the intramolecular orientational order parameter and the molecular geometrical parameters such as the bond angle, the bond rotational angle and the rotational potential energy of chemical bonds was deduced. A significant even-odd oscillation of the intramolecular orientational order parameter of LCPs with different length of flexible spacer was found and rationally related to even-odd zig-zag manner of transition properties The verification and application of the theory are also discussed. The isotropic transition temperature predicted by the theory is shown to be in favourable agreement with the experiments.
文摘The equations of the second and third order derivative curves of time with respect to potential for a reversible process in adsorption chronopotentiometry are derived and experimentally verified.
文摘This paper presents a mathematical model consisting of conservation and balance laws (CBL) of classical continuum mechanics (CCM) and ordered rate constitutive theories in Lagrangian description derived using entropy inequality and the representation theorem for thermoviscoelastic solids (TVES) with rheology. The CBL and the constitutive theories take into account finite deformation and finite strain deformation physics and are based on contravariant deviatoric second Piola-Kirchhoff stress tensor and its work conjugate covariant Green’s strain tensor and their material derivatives of up to order m and n respectively. All published works on nonlinear dynamics of TVES with rheology are mostly based on phenomenological mathematical models. In rare instances, some aspects of CBL are used but are incorrectly altered to obtain mass, stiffness and damping matrices using space-time decoupled approaches. In the work presented in this paper, we show that this is not possible using CBL of CCM for TVES with rheology. Thus, the mathematical models used currently in the published works are not the correct description of the physics of nonlinear dynamics of TVES with rheology. The mathematical model used in the present work is strictly based on the CBL of CCM and is thermodynamically and mathematically consistent and the space-time coupled finite element methodology used in this work is unconditionally stable and provides solutions with desired accuracy and is ideally suited for nonlinear dynamics of TVES with memory. The work in this paper is the first presentation of a mathematical model strictly based on CBL of CCM and the solution of the mathematical model is obtained using unconditionally stable space-time coupled computational methodology that provides control over the errors in the evolution. Both space-time coupled and space-time decoupled finite element formulations are considered for obtaining solutions of the IVPs described by the mathematical model and are presented in the paper. Factors or the physics influencing dynamic response and dynamic bifurcation for TVES with rheology are identified and are also demonstrated through model problem studies. A simple model problem consisting of a rod (1D) of TVES material with memory fixed at one end and subjected to harmonic excitation at the other end is considered to study nonlinear dynamics of TVES with rheology, frequency response as well as dynamic bifurcation phenomenon.
文摘This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures.
基金supported by the National Natural Science Foundation of China(71401051)China Postdoctoral Science Foundation(2018M630562)+1 种基金the Leverhulme Trust International Network(IN-2014-020)the Cultural and Artistic Scientific Research Project of Hebei Province(HBWY2014-Y-C031)
文摘To reveal the relationship between a weakening buffer operator and strengthening buffer operator, the traditional integer order buffer operator is extended to one that is fractional order. Fractional order buffer operator not only can generalize the weakening buffer operator and the strengthening buffer operator, but also results in small adjustments of the buffer effect.The effectiveness of the grey model(GM(1,1)) with the fractional order buffer operator is validated by six cases.
文摘The paper presents an approach for the formulation of general laminated shells based on a third order shear deformation theory. These shells undergo finite (unlimited in size) rotations and large overall motions but with small strains. A singularity-free parametrization of the rotation field is adopted. The constitutive equations, derived with respect to laminate curvilinear coordinates, are applicable to shell elements with an arbitrary number of orthotropic layers and where the material principal axes can vary from layer to layer. A careful consideration of the consistent linearization procedure pertinent to the proposed parametrization of finite rotations leads to symmetric tangent stiffness matrices. The matrix formulation adopted here makes it possible to implement the present formulation within the framework of the finite element method as a straightforward task.
文摘The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.
文摘A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domain second order theory of water waves. Liquid sloshing in a rectangular container Subjected to a horizontal excitation is simulated by the finite element method. Comparisons between the two theories are made based on their numerical results. It is found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur for large amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features of nonlinear wave and can be used instead of the fully nonlinear theory.
文摘Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
文摘This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a Mode-I crack problem. The fractional order theory of thermoelasticity is used to obtain the analytical solutions for displacement components, force stresses, and temperature. The boundary of the crack is subjected to a prescribed stress distribution and temperature. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The variations of the considered variables with the horizontal distance are illustrated graphically. Some particular cases are also discussed in the context of the problem. Effects of the fractional parameter, reinforcement, and rotation on the varia- tions of different field quantities inside the elastic medium are analyzed graphically. Comparisons are made between the results in the presence and those in the absence of fiber-reinforcing, rotating and fractional parameters.
基金Project supported by the National High Technology Research and Development Program of China(No.2009AA032303-2)
文摘To satisfy the interfacial shear force continuity conditions, a new model is proposed for the two-layer composite beam with partial interaction by modifying Reddy's higher order beam theory. The governing differential equations for free vibration and buckling are formulated using the Hamilton's principle, the natural frequencies and axial forces are thus analytically obtained by Laplace transform technique. The analytical results are verified through the comparison with those of several other models common in use; and the presented model is found to be a finer one than the Reddy's. A parametric study is also performed to investigate the effects of geometry and material parameters.
文摘The failure analysis of simply supported, isotropic, square plates is addressed. Attention focuses on minimum failure load amplitudes and failure locations, von Mises' equivalent stress along the plate thickness is also addressed. Several distributed and localized loading conditions are considered. Loads act on the top of the plate. Bi-sinusoidal and uniform loads are taken into account for distributed loadings, while stepwise constant centric and off-centric loadings are addressed in the case of localized loadings. Analysis is performed considering plates whose length-to-thickness ratio a/h can be as high as 100 (thin plates) and as low as 2 (very thick plates). Results are obtained via several 2D plate models. Classical theories (CTs) and higher order models are applied. Those theories are based on polynomial approximation of the displacement field. Among the higher order theories (HOTs) HOTsa models account for the transverse shear deformations, while HOTs models account for both transverse shear and transverse normal deformations. LHOTs represent a local application of the higher order theories. A layerwise approach is thus assumed: by means of mathematical interfaces, the plate is considered to be made of several fictitious layers. The exact 3D solution is presented in order to determine the accuracy of the results obtained via the 2D models. In this way a hierarchy among the 2D theories is established. CTs provide highly accurate results for a/h greater than 10 in the case of distributed loadings and greater than 20 for localized loadings. Results obtained via HOTs are highly accurate in the case of very thick plates for bi-sinusoidal and centric loadings. In the case of uniform and off-centric loadings a high gradient is present in the neighborhood of the plate top. In those cases, LHOTs yield results that match the exact solution.
基金financially supported by the Science Fund for Outstanding Youth of the National Natural Science Foundation of China(Grant No.51222904)the National Security Major Basic Research Program of China(Grant No.613157)+1 种基金the Key Program of National Natural Science Foundation of China(Grant No.0939002)the National Natural Science Foundation of China(Grant No.51209052)
文摘A general theoretical model is developed to investigate the sound radiation from an infinite orthogonally stiffened plate under point excitation force. The plate can be metallic or composite, and fluid loading is also considered in the research. The first order shear deformation theory is used to account for the transverse shear deformation. The motion of the equally spaced stiffeners is examined by considering their bending vibrations and torsional movements. Based on the periodic structure theory and the concepts of the equivalent dynamic flexibility of the plate, the generalized vibro-acoustic equation of the model is obtained by applying the Fourier transform method. The generalized model that can be solved numerically is validated by comparing model predictions with the existing results. Numerical calculations are performed to investigate the effects of the location of the excitation, the spacing of the stiffeners, the plate thickness, the strengthening form and the fiber orientation on the sound radiation characteristic of the orthogonaUy stiffened plate, and some practical conclusions are drawn from these parameter studies.
文摘Selection of the crusher required a great deal of design regarding to the mine planning. Selection of suitable primary crusher from all of available primary crushers is a multi-criterion decision making(MCDM) problem. The present work explores the use of technique for order performance by similarity to ideal solution(TOPSIS) with fuzzy set theory to select best primary crusher for Golegohar Iron Mine in Iran. Gyratory, double toggle jaw, single toggle jaw, high speed roll crusher, low speed sizer, impact crusher, hammer mill and feeder breaker crushers have been considered as alternatives. Also, the capacity, feed size, product size, rock compressive strength, abrasion index and application of primary crusher for mobile plants were considered as criteria for solution of this MCDM problem. To determine the order of the alternatives, closeness coefficient is defined by calculating the distances to the fuzzy positive ideal solution(FPIS) and fuzzy negative ideal solution(FNIS). Results of our work based on fuzzy TOPSIS method show that the gyratory is the best primary crusher for the studied mine.
文摘A postbuckling analysis is presented for a shear deformable laminated cylindrical panel of finite length subjected to lateral pressure. The governing equations are based on Reddy's higher order shear deformation shell theory with von Krmn_Donnell_type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical panels under lateral pressure. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, moderately thick, cross_ply laminated cylindrical panels. The effects played by transverse shear deformation, panel geometric parameters, total number of plies, fiber orientation, and initial geometric imperfections are studied.
文摘The application of behavioural theory to corporate finance is now attracting the attention of theoretical work. However, very little rigorous empirical work has been carried out to analyse the desirability of behavioural biases in relation to financing decisions. The main results argue that managerial overconfidence provides an alternative determinant of capital structure. However, many questions remain to be explored, related to overconfidence measures and positive/negative effects of managerial overconfidence. Our paper assumes that the combination of financial theory and behavioural theory leads to better explanatory power. We follow two complementary goals. Firstly, we examine the dynamic trade-off model introducing a behavioural perspective. Secondly, we propose extending the pecking order analysis to incorporate overconfidence in Shyam-Sunder and Myers's model. We use a sample of Tunisian firms and employ panel-data estimation procedures to account for endogeneity and spurious correlation issues. Our results confirm the assumption that manager confidence is positively related to debt level. Overconfident managers underestimate the probability of financial distress and will choose higher levels of debt than they would if they were "rational".
基金Project supported by the National Natural Science Foundation of China(No.11102073)the National Science Foundation for Post-doctoral Scientists of China(No.2012M511207)+1 种基金the Research Foundation of Advanced Talents of Jiangsu University(No.10JDG055)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The thermal shock problems involved with fractional order generalized theory is studied by an analytical method. The asymptotic solutions for thermal responses induced by transient thermal shock are derived by means of the limit theorem of Laplace transform. An infinite solid with a cylindrical cavity subjected to a thermal shock at its inner boundary is studied. The propagation of thermal wave and thermal elastic wave, as well as the distributions of displacement, temperature and stresses are obtained from these asymptotic solutions. The investigation on the effect of fractional order parameter on the propagation of two waves is also conducted.