In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point...In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.展开更多
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solution...Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.展开更多
In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems ...In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.展开更多
A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire c...A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.展开更多
For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation ...For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.展开更多
The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the correspondi...The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.展开更多
In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream fun...In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.展开更多
In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosin...In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.展开更多
In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the a...In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.展开更多
We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of ord...We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.展开更多
This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singula...This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v,...In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.展开更多
This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)...This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.展开更多
A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integr...A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integral transform is employedand the case when loading is distributed,in accordance with Hertz'x law ,is discussed.The limiting solution for incompressible isotropic elastic material is also derived.Numerical calculations for the second order elastic material for the displacement and the normal stress in the z-direction are carried out .It is found that,in comparison to the linear elastic case,the displacement increases and the normal stress decreases in the second order elastic material.展开更多
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc...The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.展开更多
In this paper, the method of non-conforming mixed finite element for second order elliptic problems is discussed and a format of real optimal order for the lowest order error estimate.
In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergenc...In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.展开更多
In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of c...In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of cone expansion-compression type we give several sufficient conditions.展开更多
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金The NSF (11201109) of Chinathe NSF (10040606Q50) of Anhui Province+1 种基金Excellent Talents Foundation (2012SQRL165) of University of Anhui Provincethe NSF (2012kj09) of Heifei Normal University
文摘In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.
文摘Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
文摘In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.
基金Project supported by the National Natural Science Foundation of China(No.40074031)the Science Foundation of the Science and Technology Commission of Shanghai Municipalitythe Program for Young Excellent Talents in Tongji University(No.2007kj008)
文摘A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.
文摘For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.
文摘The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.
基金supported by the National Natural Science Foundation of China (No.10871131)the Science and Technology Commission of Shanghai Municipality (No.075105118)+1 种基金the Shanghai Leading Academic Discipline Project (No.S30405)the Fund for E-institutes of Shanghai Universities(No.E03004)
文摘In this paper, we investigate the mixed spectral method using generalized Laguerre functions for exterior problems of fourth order partial differential equations. A mixed spectral scheme is provided for the stream function form of the Navier-Stokes equations outside a disc. Numerical results demonstrate the spectral accuracy in space.
基金This project is supported by the Natural Science Foundation of China and Science Development Foundation of the Colleges and University of Shanghai.
文摘In this paper, α-times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α-times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α+1)-times abstract Cauchy problem and mild a -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine function. The characterization of an exponentially bounded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.
文摘In this paper a singularly perturbed linear second order hyperbolic problem with zeroth order reduced equation is discussed. Firstly, an energy inequality of the solution and an estimate of the remainder term of the asymptotic solution are given. Then an exponentially fitted difference scheme is developed in an equidistant mesh. Finally, uniform convergence in small parameter is proved in the sense of discrete energy norm.
文摘We develop a numerical method for solving the boundary value problem of The Linear Seventh Ordinary Boundary Value Problem by using the seventh-degree B-Spline function. Formulation is based on particular terms of order of seventh order boundary value problem. We obtain Septic B-Spline formulation and the Collocation B-spline method is formulated as an approximation solution. We apply the presented method to solve an example of seventh order boundary value problem in which the result shows that there is an agreement between approximate solutions and exact solutions. Resulting in low absolute errors shows that the presented numerical method is effective for solving high order boundary value problems. Finally, a general conclusion has been included.
基金supported by the National Natural Science Foundation of China(Key Program)(Nos.11132004 and 51078145)
文摘This paper presents a high order multiplication perturbation method for sin- gularly perturbed two-point boundary value problems with the boundary layer at one end. By the theory of singular perturbations, the singularly perturbed two-point boundary value problems are first transformed into the singularly perturbed initial value problems. With the variable coefficient dimensional expanding, the non-homogeneous ordinary dif- ferential equations (ODEs) are transformed into the homogeneous ODEs, which are then solved by the high order multiplication perturbation method. Some linear and nonlinear numerical examples show that the proposed method has high precision.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.
文摘This paper is concerned with the following n-th ordinary differential equation:{u~(n)(t)=f(t,u(t),u~(1)(t),···,u~(n-1) (t)),for t∈(0,1),u~(i) (0)=0,0 ≤i≤n3,au~(n-2)(0)du~(n-1)(0)=0,cu~(n-2)(1)+du~(n-1)(1)=0,where a,c ∈ R,,≥,such that a~2 + b~2 >0 and c~2+d~2>0,n ≥ 2,f:[0,1] × R → R is a continuous function.Assume that f satisfies one-sided Nagumo condition,the existence theorems of solutions of the boundary value problem for the n-th-order nonlinear differential equations above are established by using Leray-Schauder degree theory,lower and upper solutions,a priori estimate technique.
文摘A closed form solution to the second order elasticity problem ,when an isotropiccompressible elastic half-space undergoes a deformation owing to a non-uniformlydistributed normal load,is presented,The method of integral transform is employedand the case when loading is distributed,in accordance with Hertz'x law ,is discussed.The limiting solution for incompressible isotropic elastic material is also derived.Numerical calculations for the second order elastic material for the displacement and the normal stress in the z-direction are carried out .It is found that,in comparison to the linear elastic case,the displacement increases and the normal stress decreases in the second order elastic material.
基金supported by National Natural Science Foundation of China (Grant No.11101415)the National Center for Mathematics and Interdisciplinary Sciences,CAS
文摘The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
基金Project supported by the Cultivating Foundation of Youthful Backbone of Science and Technologyof Beijing, the National Science
文摘In this paper, the method of non-conforming mixed finite element for second order elliptic problems is discussed and a format of real optimal order for the lowest order error estimate.
基金supported by National Natural Science Foundation of China(Grant Nos.11001259,11031006,11071265,11201501 and 91230110)National Basic Research Program of China(973 Project)(Grant No. 2011CB309703)+3 种基金International S&T Cooperation Program of China(Grant No. 2010DFR00700)Croucher Foundation of Hong Kong Baptist Universitythe National Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CASthe Fundamental Research Funds for the CentralUniversities(Grant No. 2012121003)
文摘In this paper,a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed,based on a type of superconvergence result of the eigenfunction approximation.Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.
文摘In this paper we consider the existence of infinitely many positive solutions for second order nonlinear eigenvalue problem with singular coefficient function. By the use of Krasnosel'skii fixed point theorem of cone expansion-compression type we give several sufficient conditions.