Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil char...Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil characteristics. The study is based on about twenty location and soil characteristics, majority of them are observed through laboratory analysis of soil and water samples collected from nearly thee hundred locations of drinking water sources, wells and bore wells selected at random from the district of Kasaragod. The water contamination in wells are found to be relatively more as compared to bore wells. The study reveals that only 7 % of the wells and 40 o~ of the bore wells of the district are within the permissible limit of WHO standard of drinking water quality. The level of contamination is very high in the hospital premises and is very low in the forest area. Two separate multiple ordinal logistic regression models are developed to predict the level of coliform count, one for well and the other for bore well. The significant feature of this study is that in addition to scientifically proving the dependence of the water quality on the distances from waste disposal area and septic tanks etc., it highlights the dependence of two other very significant soil characteristics, the soil organic carbon and soil porosity. The models enable to predict the quality of water in a location based on the set of soil and location characteristics. One of the important uses of the model is in fixing safe locations for waste dump area, septic tank, digging well etc. in town planning, designing residential layouts, industrial layouts, hospital/hostel construction etc. This is the first ever study to describe the ground water quality in terms of the location and soil characteristics.展开更多
文摘Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil characteristics. The study is based on about twenty location and soil characteristics, majority of them are observed through laboratory analysis of soil and water samples collected from nearly thee hundred locations of drinking water sources, wells and bore wells selected at random from the district of Kasaragod. The water contamination in wells are found to be relatively more as compared to bore wells. The study reveals that only 7 % of the wells and 40 o~ of the bore wells of the district are within the permissible limit of WHO standard of drinking water quality. The level of contamination is very high in the hospital premises and is very low in the forest area. Two separate multiple ordinal logistic regression models are developed to predict the level of coliform count, one for well and the other for bore well. The significant feature of this study is that in addition to scientifically proving the dependence of the water quality on the distances from waste disposal area and septic tanks etc., it highlights the dependence of two other very significant soil characteristics, the soil organic carbon and soil porosity. The models enable to predict the quality of water in a location based on the set of soil and location characteristics. One of the important uses of the model is in fixing safe locations for waste dump area, septic tank, digging well etc. in town planning, designing residential layouts, industrial layouts, hospital/hostel construction etc. This is the first ever study to describe the ground water quality in terms of the location and soil characteristics.