Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources ...Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources are the ones going through the ring of fire.Therefore,not every country is lucky enough to own this resource.As a country with 117 active volcanoes and within the world’s ring of fire,it is a country whose geothermal resources are estimated to be about 40%of the world’s geothermal energy potential.However,the percentage used compared to the geothermal potential is too small.Therefore,this is the main energy source that Indonesia is aiming to exploit and use.However,the deployment and development of this energy source are still facing many obstacles due to many aspects from budget sources due to high capital costs,factory construction location,quality of resources,and conflicts of the local community.In this context,determining the optimal locations for geothermal energy sites(GES)is one of the most important and necessary issues.To strengthen the selection methods,this study applies a two-layer fuzzy multi-criteria decision-making method.Through the layers,the Ordinal Priority Approach(OPA)is proposed to weight the sub-criteria,the main criterion,and the sustainability factors.In layer 2,the Neutrosophic Fuzzy Axiomatic Design(NFAD)is applied to rank and evaluate potential locations for geothermal plant construction.Choosing the right geothermal energy site can bring low-cost efficiency,no greenhouse gas emissions,and quickly become the main energy source providing electricity for Indonesia.The final ranking shows Papua,Kawah Cibuni,and Moluccas as the three most suitable cities to build geothermal energy systems.Kawah Cibuni was identified as the most potential GES in Indonesia,with a score of 0.46.Papua is the second most promising GES with a score of 0.45.Next is the Moluccas,with a score of 0.39.However,the three least potential sites among the 15 studied sites are Lumut Balai,Moluccas and Patuha,with scores of 0.08,0.11 and 0.17,respectively.The conclusion of this study also classifies positions into groups to aid in decision-making.展开更多
The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both t...The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.展开更多
The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in pa...The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in parallel” to the tradition-al ones, such as those based, for example, on the hypotheses of “Dark Matter” and “Dark Energy”, or better as a “com-possible” perspective, because it is not understood as being “exclusive”. In fact, it is an approach that, when con-firmed by experimental results, always keeps its validity from an “operative” point of view. This is because, in analogy to the traditional perspectives, on the basis of Popper’s Falsification Principle the corresponding “Generative” Logic on which it is based has not the property of the perfect induction. The basic difference then only consists in the fact that the Evolution of the Universe is now modeled by considering the Universe as a Self-Organizing System, which is thus analyzed in the light of the Maximum Ordinality Principle.展开更多
China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand...China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.展开更多
Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport....Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport.While MCS between the endoplasmic reticulum (ER)and mitochondria has long been investigated。展开更多
The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can ov...The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.展开更多
Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniq...Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.展开更多
The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be mode...The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).展开更多
The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead ...The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead of recognizing them ex post. The specific case here considered is the “bipolar disorder”, in which the adoption of three different drugs is the most common practice, although with a possible differentiation between the prescription in the morning and in the evening, respectively. Thus, the proposed methodology will consider the Ordinal Interactions between the various drugs by evaluating their combined effects, which will result as being not a simple additive “sum”, because they are evaluated on the basis of the Maximum Ordinality Principle (MOP) and, in addition, in Adherence to the Explicit Solution to the “Three-Body Problem”. In this way the Methodology here proposed is able to suggest how to account for the synergistic effects of the various drugs, especially when the latter are characterized by different concentrations and, at the same time, by generally different half-lives respectively.展开更多
This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. T...This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. This is because, in such a context, the “Three-body Problem” can be analyzed in its all descriptive possibilities. Nonetheless, the paper also presents the Solution to the “Three-body Problem” with reference to Systems totally independent from the Solar System, such as, for example, the “Triple Stars” and the “Triple Galaxies”. In this way, the paper offers a sufficiently complete framework concerning the Solution to the “Three-body Problem”, always in the Light of the Maximum Ordinality Principle, described in detail in Appendix A.展开更多
Sixteen different vegetation types of grassland and shrubland were selected to study the component and diversity of plant species of riparian plant communities along main channel in the Three-Gorges areas. Species ric...Sixteen different vegetation types of grassland and shrubland were selected to study the component and diversity of plant species of riparian plant communities along main channel in the Three-Gorges areas. Species richness (s), Simpson index (D), and Shannon-Weiner index (H) were used to study the biodiversity and the hierarchical classification was carried out by the methods of TWINSPAN and DCA ordination. The results showed that the components of flora were complex and dominated by the temperate type in the riparian plant communities. Species diversity was not different between the communities, but Shannon-Weiner indexes of different layers in some grassland were significantly different. TWINSPAN and DCA indicated that riparian plant communities distributed along the gradient of moisture.展开更多
文摘Geothermal energy is considered a renewable,environmentally friendly,especially carbon-free,sustainable energy source that can solve the problem of climate change.In general,countries with geothermal energy resources are the ones going through the ring of fire.Therefore,not every country is lucky enough to own this resource.As a country with 117 active volcanoes and within the world’s ring of fire,it is a country whose geothermal resources are estimated to be about 40%of the world’s geothermal energy potential.However,the percentage used compared to the geothermal potential is too small.Therefore,this is the main energy source that Indonesia is aiming to exploit and use.However,the deployment and development of this energy source are still facing many obstacles due to many aspects from budget sources due to high capital costs,factory construction location,quality of resources,and conflicts of the local community.In this context,determining the optimal locations for geothermal energy sites(GES)is one of the most important and necessary issues.To strengthen the selection methods,this study applies a two-layer fuzzy multi-criteria decision-making method.Through the layers,the Ordinal Priority Approach(OPA)is proposed to weight the sub-criteria,the main criterion,and the sustainability factors.In layer 2,the Neutrosophic Fuzzy Axiomatic Design(NFAD)is applied to rank and evaluate potential locations for geothermal plant construction.Choosing the right geothermal energy site can bring low-cost efficiency,no greenhouse gas emissions,and quickly become the main energy source providing electricity for Indonesia.The final ranking shows Papua,Kawah Cibuni,and Moluccas as the three most suitable cities to build geothermal energy systems.Kawah Cibuni was identified as the most potential GES in Indonesia,with a score of 0.46.Papua is the second most promising GES with a score of 0.45.Next is the Moluccas,with a score of 0.39.However,the three least potential sites among the 15 studied sites are Lumut Balai,Moluccas and Patuha,with scores of 0.08,0.11 and 0.17,respectively.The conclusion of this study also classifies positions into groups to aid in decision-making.
文摘The present paper is finalized to show that the Science, even if considered in its two different Phenomenological Approaches at present known, is unable to assert that: “Thinks are like that”. This is because both the two Scientific Approaches previously mentioned have not the property of “the perfect induction”. Consequently, although they can even reach an experimental confirmation of the theoretical results, and thus a “valid description” of the various phenomena of the surrounding world, such a description has not an “absolute value”. In fact, it always and only has an “operative validity”, that is, it exclusively and solely refers to an “experimental point of view”. This means that such an “operative validity” cannot represent the basis for a logical process characterized by a “perfect induction”. In addition, the Traditional Scientific Approach is also characterized by “Insoluble” Problems, “Intractable Problems”, Problems with “drifts”, which could generally be termed as “side effects”. On the other hand, the same com-possible Scientific Approach based on the Emerging Quality of Self-Organizing Systems, also presents its “Emerging Exits”. Consequently, none of the two mentioned scientific Approaches has the “gift” of “the perfect induction”. However, there are significant differences between the two. Differences that may “suggest” the most appropriate choice among them for an “operative point of view”. This conclusion will be com-proved by considering, with particular reference, both the “side effects”, which are related to the Traditional Approach and, on the other hand, the “Emerging Exits”, which specifically pertain to the new Scientific Approach based on the Emerging Quality of Self-Organizing Systems.
文摘The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in parallel” to the tradition-al ones, such as those based, for example, on the hypotheses of “Dark Matter” and “Dark Energy”, or better as a “com-possible” perspective, because it is not understood as being “exclusive”. In fact, it is an approach that, when con-firmed by experimental results, always keeps its validity from an “operative” point of view. This is because, in analogy to the traditional perspectives, on the basis of Popper’s Falsification Principle the corresponding “Generative” Logic on which it is based has not the property of the perfect induction. The basic difference then only consists in the fact that the Evolution of the Universe is now modeled by considering the Universe as a Self-Organizing System, which is thus analyzed in the light of the Maximum Ordinality Principle.
基金funded by the National Key Research and Development Project(Grant No.2019YFE0123300)the National Natural Science Foundation of China(Grant No.42072337)+1 种基金the preresearch project on Civil Aerospace Technologies(Grant Nos.D020101 and D020102)funded by the China National Space Administration through the Pandeng Program of the National Space Science Center,Chinese Academy of Sciences,Key Research Program of the Chinese Academy of Sciences(Grant No.ZDBS-SSW-TLC001).
文摘China’s first Mars rover,Zhurong,successfully landed in the south of Utopia Planitia.The surface water content at the landing area can provide constraints on mineral formation conditions and help us better understand the evolution of the Martian aqueous and geological environment.In this work,the surface kinetic temperature of the Zhurong landing area was derived by analyzing data from the Mars Express Observatoire pour la Minéralogie,l’Eau,les Glaces et l’Activité(OMEGA)spectrometer.Using the Discrete Ordinate Radiative Transfer(DISORT)model,we performed atmospheric correction and thermal correction for the OMEGA data to obtain the surface effective single-particle absorption thickness(ESPAT)parameter to evaluate the surface water content.The surface water content distribution at the landing area was relatively uniform at a lateral scale of~10 km.At the Zhurong landing site,the surface water content in the topmost layer(a few hundred micrometers)of the regolith was 5−8 weight percent water(wt%H_(2)O),assuming surface particle sizes of<45μm,or 1.6−2.5 wt%H_(2)O,assuming surface particle sizes in the range of 125−250μm.The Mars Surface Composition Detector(MarSCoDe)onboard Zhurong also observed significant H_(2)O/OH signals in the landing area.Our results provide an important regional context for the hydration state of the area and can be further verified by the H content derived from the Laser-Induced Breakdown Spectrometer(LIBS)data of MarSCoDe.
文摘Membrane contact sites (MCS) occur between closely apposed organelles and are a means to transport ions and macromolecules between themselves,co-ordinate cellular metabolism,and direct organelle fission and transport.While MCS between the endoplasmic reticulum (ER)and mitochondria has long been investigated。
文摘The complex structure and strong heterogeneity of advanced nuclear reactor systems pose challenges for high-fidelity neutron-shielding calculations. Unstructured meshes exhibit strong geometric adaptability and can overcome the deficiencies of conventionally structured meshes in complex geometry modeling. A multithreaded parallel upwind sweep algorithm for S_(N) transport was proposed to achieve a more accurate geometric description and improve the computational efficiency. The spatial variables were discretized using the standard discontinuous Galerkin finite-element method. The angular flux transmission between neighboring meshes was handled using an upwind scheme. In addition, a combination of a mesh transport sweep and angular iterations was realized using a multithreaded parallel technique. The algorithm was implemented in the 2D/3D S_(N) transport code ThorSNIPE, and numerical evaluations were conducted using three typical benchmark problems:IAEA, Kobayashi-3i, and VENUS-3. These numerical results indicate that the multithreaded parallel upwind sweep algorithm can achieve high computational efficiency. ThorSNIPE, with a multithreaded parallel upwind sweep algorithm, has good reliability, stability, and high efficiency, making it suitable for complex shielding calculations.
文摘Predictive Maintenance is a type of condition-based maintenance that assesses the equipment's states and estimates its failure probability and when maintenance should be performed.Although machine learning techniques have been frequently implemented in this area,the existing studies disregard to the nat-ural order between the target attribute values of the historical sensor data.Thus,these methods cause losing the inherent order of the data that positively affects the prediction performances.To deal with this problem,a novel approach,named Ordinal Multi-dimensional Classification(OMDC),is proposed for estimating the conditions of a hydraulic system's four components by taking into the natural order of class values.To demonstrate the prediction ability of the proposed approach,eleven different multi-dimensional classification algorithms(traditional Binary Relevance(BR),Classifier Chain(CC),Bayesian Classifier Chain(BCC),Monte Carlo Classifier Chain(MCC),Probabilistic Classifier Chain(PCC),Clas-sifier Dependency Network(CDN),Classifier Trellis(CT),Classifier Dependency Trellis(CDT),Label Powerset(LP),Pruned Sets(PS),and Random k-Labelsets(RAKEL))were implemented using the Ordinal Class Classifier(OCC)algorithm.Besides,seven different classification algorithms(Multilayer Perceptron(MLP),Support Vector Machine(SVM),k-Nearest Neighbour(kNN),Decision Tree(C4.5),Bagging,Random Forest(RF),and Adaptive Boosting(AdaBoost))were chosen as base learners for the OCC algorithm.The experimental results present that the proposed OMDC approach using binary relevance multi-dimensional classification methods predicts the conditions of a hydraulic system's multiple components with high accuracy.Also,it is clearly seen from the results that the OMDC models that utilize ensemble-based classification algorithms give more reliable prediction performances with an average Hamming score of 0.853 than the others that use traditional algorithms as base learners.
文摘The main objective of this paper is to demonstrate that the internal processes of Self-Organizing Systems represent a unique and singular process, characterized by their specific generativity. This process can be modeled using the Maximum Ordinality Principle and its associated formal language, known as the “Incipient” Differential Calculus (IDC).
文摘The present paper aims at showing the possible adoption in Psychiatry of a general methodology finalized to prescribe the most appropriate Therapy based on the knowledge of its correlative effects in advance, instead of recognizing them ex post. The specific case here considered is the “bipolar disorder”, in which the adoption of three different drugs is the most common practice, although with a possible differentiation between the prescription in the morning and in the evening, respectively. Thus, the proposed methodology will consider the Ordinal Interactions between the various drugs by evaluating their combined effects, which will result as being not a simple additive “sum”, because they are evaluated on the basis of the Maximum Ordinality Principle (MOP) and, in addition, in Adherence to the Explicit Solution to the “Three-Body Problem”. In this way the Methodology here proposed is able to suggest how to account for the synergistic effects of the various drugs, especially when the latter are characterized by different concentrations and, at the same time, by generally different half-lives respectively.
文摘This paper presents the Solution to the “Three-body Problem” in the Light of the Maximum Ordinality Principle. In the first part, however, it starts with the Solution to the Solar System, made up of “11 Bodies”. This is because, in such a context, the “Three-body Problem” can be analyzed in its all descriptive possibilities. Nonetheless, the paper also presents the Solution to the “Three-body Problem” with reference to Systems totally independent from the Solar System, such as, for example, the “Triple Stars” and the “Triple Galaxies”. In this way, the paper offers a sufficiently complete framework concerning the Solution to the “Three-body Problem”, always in the Light of the Maximum Ordinality Principle, described in detail in Appendix A.
基金This study was supported by the Chinese Academy of Sciences (A grant KZCX2-406) the National Natural Science Foundation of China (NSFC39970123) and Changbai Mountain Open Research Station.
文摘Sixteen different vegetation types of grassland and shrubland were selected to study the component and diversity of plant species of riparian plant communities along main channel in the Three-Gorges areas. Species richness (s), Simpson index (D), and Shannon-Weiner index (H) were used to study the biodiversity and the hierarchical classification was carried out by the methods of TWINSPAN and DCA ordination. The results showed that the components of flora were complex and dominated by the temperate type in the riparian plant communities. Species diversity was not different between the communities, but Shannon-Weiner indexes of different layers in some grassland were significantly different. TWINSPAN and DCA indicated that riparian plant communities distributed along the gradient of moisture.