Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential e...Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.展开更多
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin...How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.展开更多
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ...A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.展开更多
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,...In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.展开更多
In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-u...In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.展开更多
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,...In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.展开更多
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl...The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.展开更多
Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations unde...Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations under arbitrary boundary condition. By this method, the general computation formal is obtained. Its convergence in proved. We can get analytic expressions which converge to exact solution and its higher order derivatives uniformy Four numerical examples are given, which indicate that satisfactory results can he obtanedby this method.展开更多
Consider the neutral differential equations with variable coefficients and delays [x(t)-p(t)x(t-r(t))]'+ Qj(t)x(t-σj(t))=0. (1)We establish sufficient conditions for the oscillation of equation (1). Our condition...Consider the neutral differential equations with variable coefficients and delays [x(t)-p(t)x(t-r(t))]'+ Qj(t)x(t-σj(t))=0. (1)We establish sufficient conditions for the oscillation of equation (1). Our condition is 'sharp' in the sense that when all the coefficients and delays of the equation are constants.Our conclusions improve and generalize some known results.展开更多
An iterative process of positive solution for BVP w'+h(t)f(w)=0, w(0)=w(1)= 0 is established, where h(t) is allowed to changes sign on [0,1]. The process starts from a simple function.
The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- effi...The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.展开更多
In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-...In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.展开更多
According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numeric...According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.展开更多
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary co...In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.展开更多
文摘Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained.
基金Project supported by the National Natural Science Foundation of China(No.10461005)
文摘How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability.
文摘A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved.
基金The Project Supported by the National Natural Science Foundation of China
文摘In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales.
基金The work was supported in part by the Special Funds of State Major Basic Research Projects (Grant No.1999032804) by scientific Research Fund of Hunan Provincial Education Department (03C508).
文摘In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
基金Provincial Science and Technology Foundation of Guizhou
文摘In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method.
基金the Natural Science Foundation of Anhui Province(Grant No.1908085QA09)the University Natural Science Research Project of Anhui Province(KJ2019A0591).
文摘The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems.
文摘Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations under arbitrary boundary condition. By this method, the general computation formal is obtained. Its convergence in proved. We can get analytic expressions which converge to exact solution and its higher order derivatives uniformy Four numerical examples are given, which indicate that satisfactory results can he obtanedby this method.
文摘Consider the neutral differential equations with variable coefficients and delays [x(t)-p(t)x(t-r(t))]'+ Qj(t)x(t-σj(t))=0. (1)We establish sufficient conditions for the oscillation of equation (1). Our condition is 'sharp' in the sense that when all the coefficients and delays of the equation are constants.Our conclusions improve and generalize some known results.
文摘An iterative process of positive solution for BVP w'+h(t)f(w)=0, w(0)=w(1)= 0 is established, where h(t) is allowed to changes sign on [0,1]. The process starts from a simple function.
基金National Natural Science Foundation of China(No.51178175)
文摘The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode.
文摘In the event of an instantaneous valve closure, the pressure transmitted to a surge tank induces the mass fluctuations that can cause high amplitude of water-level fluctuation in the surge tank for a reasonable cross-sectional area. The height of the surge tank is then designed using this high water level mark generated by the completely closed penstock valve. Using a conical surge tank with a non-constant cross-sectional area can resolve the problems of space and height. When addressing issues in designing open surge tanks, key parameters are usually calculated by using complex equations, which may become cumbersome when multiple iterations are required. A more effective alternative in obtaining these values is the use of simple charts. Firstly, this paper presents and describes the equations used to design open conical surge tanks. Secondly, it introduces user-friendly charts that can be used in the design of cylindrical and conical open surge tanks. The contribution can be a benefit for practicing engineers in this field. A case study is also presented to illustrate the use of these design charts. The case study’s results show that key parameters obtained via successive approximation method required 26 iterations or complex calculations, whereas these values can be obtained by simple reading of the proposed chart. The use of charts to help surge tanks designing, in the case of preliminary designs, can save time and increase design efficiency, while reducing calculation errors.
基金supported by the National Natural Science Foundation of China Under Grant No.61773008.
文摘According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed.
文摘In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally.