期刊文献+
共找到288篇文章
< 1 2 15 >
每页显示 20 50 100
A SEMI-ANALYSIS METHOD OF DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS UNDER COMPLICATED BOUNDARY CONDITIONS
1
作者 黎明安 王忠民 郭志勇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第2期241-246,共6页
Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential e... Based on a method of finite element model and combined with matrix theory, a method for solving differential equation with variable coefficients is proposed. With the method, it is easy to deal with the differential equations with variable coefficients. On most occasions and due to the nonuniformity nature, nonlinearity property can cause the equations of the kinds. Using the model, the satisfactory valuable results with only a few units can be obtained. 展开更多
关键词 differential equation with variable coefficients equivalent parameter solution in the domain solution of semi_analysis
下载PDF
A numerical method based on boundary integral equations and radial basis functions for plane anisotropic thermoelastostatic equations with general variable coefficients 被引量:2
2
作者 W.T.ANG X.WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第4期551-566,共16页
A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable ... A boundary integral method with radial basis function approximation is proposed for numerically solving an important class of boundary value problems governed by a system of thermoelastostatic equations with variable coe?cients. The equations describe the thermoelastic behaviors of nonhomogeneous anisotropic materials with properties that vary smoothly from point to point in space. No restriction is imposed on the spatial variations of the thermoelastic coe?cients as long as all the requirements of the laws of physics are satis?ed. To check the validity and accuracy of the proposed numerical method, some speci?c test problems with known solutions are solved. 展开更多
关键词 elliptic partial differential equation variable coefficient boundary element method radial basis function anisotropic thermoelastostatics
下载PDF
ON THE ASYMPTOTIC SOLUTIONS FOR A CLASS OF SECOND ORDER DIFFERENTIAL EQUATIONS WITH SLOWLY VARYING COEFFICIENTS
3
作者 乔宗椿 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第7期697-704,共8页
In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted,... In this paper we study the asymptotic expansions of the solutions for a class of second order ordinary differential equations with slowly varying coefficients. The defect of the known works on these problems is noted, and the results in [1 - 4] are improved and extended by means of the modified method of multiple scales. 展开更多
关键词 ordinary differential equations slowly varying coefficient asymptotic expansion solution
下载PDF
Using reproducing kernel for solving a class of partial differential equation with variable-coefficients
4
作者 王玉兰 朝鲁 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第1期129-137,共9页
How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducin... How to solve the partial differential equation has been attached importance to by all kinds of fields. The exact solution to a class of partial differential equation with variable-coefficient is obtained in reproducing kernel space. For getting the approximate solution, give an iterative method, convergence of the iterative method is proved. The numerical example shows that our method is effective and good practicability. 展开更多
关键词 iterative method exact solution approximate solution variable-coefficient partial differential equation reproducing kernel
下载PDF
Comparative Study of Radial Basis Functions for PDEs with Variable Coefficients
5
作者 Fuzhang Wang Congcong Li Kehong Zheng 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期91-96,共6页
The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to impl... The radial basis functions(RBFs)play an important role in the numerical simulation processes of partial differential equations.Since the radial basis functions are meshless algorithms,its approximation is easy to implement and mathematically simple.In this paper,the commonly⁃used multiquadric RBF,conical RBF,and Gaussian RBF were applied to solve boundary value problems which are governed by partial differential equations with variable coefficients.Numerical results were provided to show the good performance of the three RBFs as numerical tools for a wide range of problems.It is shown that the conical RBF numerical results were more stable than the other two radial basis functions.From the comparison of three commonly⁃used RBFs,one may obtain the best numerical solutions for boundary value problems. 展开更多
关键词 radial basis functions partial differential equations variable coefficient
下载PDF
Superconvergence of Continuous Finite Elements with Interpolated Coeffcients for Initial Value Problems of Nonlinear Ordinary Differential Equation
6
作者 Zhiguang Xiong Chuanmiao Chen 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2007年第1期37-44,共8页
In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-u... In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example. 展开更多
关键词 超收敛 有限元 原始价值 常微分方程
下载PDF
INSTABILITY OF SOLUTION FOR THE FOURTH ORDER LINEAR DIFFERENTIAL EQUATION WITH VARIED COEFFICIENT
7
作者 卢德渊 廖宗璜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1993年第5期481-497,共17页
In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part,... In this paper, we give some sufficient conditions of the instability for the fourth order linear differential equation with varied coefficient, at least one of the characteristic roots of which has positive real part, by means of Liapunov's second method. 展开更多
关键词 ordinary differential equation motive stability theory linear differential equation with varied coefficient
下载PDF
EXACT ANALYTIC METHOD FG(?) SOLVING VARIABLE COEFFICIENT DIFFERENTIAL EQUATION
8
作者 纪振义 叶开源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第10期885-896,共12页
Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations unde... Many engineering problems can be reduced to the solution of a variable coefficient differential equation. In this paper, the exact analytic method is suggested to solve variable coefficient differential equations under arbitrary boundary condition. By this method, the general computation formal is obtained. Its convergence in proved. We can get analytic expressions which converge to exact solution and its higher order derivatives uniformy Four numerical examples are given, which indicate that satisfactory results can he obtanedby this method. 展开更多
关键词 SOLVING variable COEFFICIENT differential EQUATION EXACT ANALYTIC METHOD FG
下载PDF
非圆弧拱面内自由振动实用解析
9
作者 胡常福 朱顺顺 +1 位作者 张鑫 罗文俊 《振动与冲击》 EI CSCD 北大核心 2024年第4期125-133,共9页
针对非圆弧拱面内线性自由振动没有解析的现状,提出了一种变系数平衡微分方程近似解析方法来解决该问题。基于笛卡尔直角坐标系下非圆弧拱线性应变与Hamilton原理,推演了非圆弧拱面内自由振动变系数平衡微分方程;基于陡拱与浅拱面内振... 针对非圆弧拱面内线性自由振动没有解析的现状,提出了一种变系数平衡微分方程近似解析方法来解决该问题。基于笛卡尔直角坐标系下非圆弧拱线性应变与Hamilton原理,推演了非圆弧拱面内自由振动变系数平衡微分方程;基于陡拱与浅拱面内振型没有显著差异的基本假定,将该变系数平衡微分方程对应的常系数平衡微分方程的通解,代入变系数平衡微分方程,得到该变系数平衡微分方程的不平衡差;当该不平衡差沿全拱积分为零时自振频率误差最小,进而得到非圆弧拱面内自振频率高精度实用解析。基于所提出的变系数平衡微分方程近似解析方法,推演了非圆弧两铰拱与无铰拱面内自振频率实用解析,并阐明了非圆弧拱与同参数直梁面内自振频率的逻辑关系。抛物线、悬索线、悬链线与组合线等常用非圆弧两铰拱与无铰拱自由振动算例结果表明:该研究的基本假定得到了严格检验;自振频率与有限元结果吻合较好,非圆弧拱前十阶自振频率中,两铰拱自振频率最大相对误差为7.71%,无铰拱自振频率最大相对误差为4.34%;非圆弧拱与同参数直梁面内自振频率的比例系数,可为行业规范条文修订提供参考。 展开更多
关键词 非圆弧拱 自由振动 HAMILTON原理 变系数微分方程 实用解析
下载PDF
OSCILLATIONS OF SOLUTIONS OF NEUTRAL DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS AND DELAYS
10
作者 Guan Xinping &.Yang Jun (Northeast Heavy Machinery Institute, ) 《Annals of Differential Equations》 1995年第4期397-403,共7页
Consider the neutral differential equations with variable coefficients and delays [x(t)-p(t)x(t-r(t))]'+ Qj(t)x(t-σj(t))=0. (1)We establish sufficient conditions for the oscillation of equation (1). Our condition... Consider the neutral differential equations with variable coefficients and delays [x(t)-p(t)x(t-r(t))]'+ Qj(t)x(t-σj(t))=0. (1)We establish sufficient conditions for the oscillation of equation (1). Our condition is 'sharp' in the sense that when all the coefficients and delays of the equation are constants.Our conclusions improve and generalize some known results. 展开更多
关键词 Neutral differential equations Oscillation variable coefficients and delays.
原文传递
一类非线性常微分方程参数估计
11
作者 孙莹莹 王珺 《长春工业大学学报》 CAS 2024年第6期557-562,共6页
针对带有交叉项的非线性常微分方程参数估计问题,利用两阶段方法,首先将最小二乘法和样条展开相结合得到基函数展开的估计,为了提高估计效率,文中提出的方法中采用了积分估计,得到了估计基函数展开的积分;其次将积分结果代入Group LASS... 针对带有交叉项的非线性常微分方程参数估计问题,利用两阶段方法,首先将最小二乘法和样条展开相结合得到基函数展开的估计,为了提高估计效率,文中提出的方法中采用了积分估计,得到了估计基函数展开的积分;其次将积分结果代入Group LASSO模型,得到参数估计值;最后进行数值模拟。结果表明,文中提出的方法在处理非线性常微分方程参数估计问题时效果良好。 展开更多
关键词 B样条 非线性常微分方程 变量选择 Group LASSO
下载PDF
三级Runge-Kutta方法阶条件的推导
12
作者 王兰 陈萌 《赣南师范大学学报》 2024年第6期25-28,共4页
Runge-Kutta(RK)方法是数值求解常微分方程的基本方法,也是构造高阶单步法的重要途径.实际计算中具有构造思路简单、计算高效等优点.然而,这类方法在构造时涉及到多变量复合函数的高阶微分运算,运算起来非常复杂.几乎所有的计算方法教... Runge-Kutta(RK)方法是数值求解常微分方程的基本方法,也是构造高阶单步法的重要途径.实际计算中具有构造思路简单、计算高效等优点.然而,这类方法在构造时涉及到多变量复合函数的高阶微分运算,运算起来非常复杂.几乎所有的计算方法教材、专著都只给出方法的构造思想,同时给出几个常用的RK方法,很少讨论高阶方法的构造过程和相关细节,初学者学起来非常吃力,不能彻底理解RK方法.基于此,本文给出三级RK方法的构造过程,从而彻底理解方法的构造思想.最后通过一些例子来检验. 展开更多
关键词 常微分方程 三级Runge-Kutta方法 泰勒展开 待定系数法
下载PDF
一类变系数椭圆型Dirichlet边值问题的差分外推格式
13
作者 沈欣 石杨 +1 位作者 杨雪花 张海湘 《湖南工业大学学报》 2025年第1期79-87,共9页
对于变系数椭圆型偏微分方程的Dirichlet边值问题,首先,应用泰勒展开建立五点差分格式,并证明差分格式解的存在唯一性;其次,应用极值原理得到差分格式解的先验估计式,进一步证明其收敛性和稳定性;再次,应用Richardson外推法,建立具有四... 对于变系数椭圆型偏微分方程的Dirichlet边值问题,首先,应用泰勒展开建立五点差分格式,并证明差分格式解的存在唯一性;其次,应用极值原理得到差分格式解的先验估计式,进一步证明其收敛性和稳定性;再次,应用Richardson外推法,建立具有四阶精度的外推格式;最后,应用Gauss-Seidel迭代方法对算例进行求解,数值结果表明Richardson外推法极大地提高了数值解的精度。 展开更多
关键词 计算数学 变系数 椭圆型偏微分方程 差分格式 RICHARDSON外推法
下载PDF
非线性二阶变系数微分方程的三点边值问题
14
作者 刘雪铃 黄静 《宁夏师范学院学报》 2024年第4期26-31,共6页
研究了非线性二阶变系数微分方程的三点边值问题.首先,对非线性二阶变系数微分方程多次积分得到与之等价的Fredholm-Hammerstein积分方程;其次,利用分段泰勒级数得到Fredholm-Hammerstein积分方程的数值解;最后,通过具体算例验证此方法... 研究了非线性二阶变系数微分方程的三点边值问题.首先,对非线性二阶变系数微分方程多次积分得到与之等价的Fredholm-Hammerstein积分方程;其次,利用分段泰勒级数得到Fredholm-Hammerstein积分方程的数值解;最后,通过具体算例验证此方法的可行性与有效性,并给出相应的误差估计. 展开更多
关键词 非线性二阶变系数微分方程 三点边值问题 Fredholm-Hammerstein积分方程 数值解 积分法
下载PDF
二阶变系数非齐次线性微分方程的一类通解
15
作者 刘蒙蒙 叶永升 石洋洋 《廊坊师范学院学报(自然科学版)》 2024年第3期125-128,共4页
利用待定函数法研究了二阶变系数非齐次线性微分方程的系数满足特定条件时的通解公式。旨在丰富二阶线性微分方程的解题技巧,培养学生的创新思维能力。
关键词 变系数 非齐次 微分方程 解题技巧
下载PDF
The theoretical analysis of dynamic response on cantilever beam of variable stiffness 被引量:1
16
作者 Huo Bingyong Yi Weijian 《Engineering Sciences》 EI 2014年第2期93-96,共4页
The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- effi... The paper presents the theoretical analysis of a variable stiffness beam. The bending stiffness EI varies continuously along the length of the beam. Dynamic equation yields differential equation with variable co- efficients based on the model of the Euler-Bernoulli beam. Then differential equation with variable coefficients becomes that with constant coefficients by variable substitution. At last, the study obtains the solution of dy- namic equation. The cantilever beam is an object for analysis. When the flexural rigidity at free end is a constant and that at clamped end is varied, the dynamic characteristics are analyzed under several cases. The results dem- onstrate that the natural angular frequency reduces as the fiexural rigidity reduces. When the rigidity of clamped end is higher than that of free end, low-level mode contributes the larger displacement response to the total re- sponse. On the contrary, the contribution of low-level mode is lesser than that of hi^h-level mode. 展开更多
关键词 stiffness function differential equation with variable coefficients cantilever beam
下载PDF
Variable-step-size second-order-derivative multistep method for solving first-order ordinary differential equations in system simulation
17
作者 Lei Zhang Chaofeng Zhang Mengya Liu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第1期42-57,共16页
According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numeric... According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed. 展开更多
关键词 Numerical method variable step size variable order hermite interpolation ordinary differential equations
原文传递
High Accuracy Arithmetic Average Discretization for Non-Linear Two Point Boundary Value Problems with a Source Function in Integral Form
18
作者 Ranjan K. Mohanty Deepika Dhall 《Applied Mathematics》 2011年第10期1243-1251,共9页
In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary co... In this article, we report the derivation of high accuracy finite difference method based on arithmetic average discretization for the solution of Un=F(x,u,u′)+∫K(x,s)ds , 0 x s < 1 subject to natural boundary conditions on a non-uniform mesh. The proposed variable mesh approximation is directly applicable to the integro-differential equation with singular coefficients. We need not require any special discretization to obtain the solution near the singular point. The convergence analysis of a difference scheme for the diffusion convection equation is briefly discussed. The presented variable mesh strategy is applicable when the internal grid points of the solution space are both even and odd in number as compared to the method discussed by authors in their previous work in which the internal grid points are strictly odd in number. The advantage of using this new variable mesh strategy is highlighted computationally. 展开更多
关键词 variable Mesh ARITHMETIC Average DISCRETIZATION NON-LINEAR Integro-differential EQUATION Diffusion EQUATION Simpson’s 1/3 Rd Rule SINGULAR coefficients Burgers’ EQUATION Maximum Absolute Errors
下载PDF
浅谈二阶变系数齐次线性微分方程的解法
19
作者 刘俊利 《高等数学研究》 2023年第3期17-18,共2页
给出了二阶变系数齐次线性微分方程为恰当方程的充分与必要条件,对于恰当方程,给出了方程的求解方法.当二阶齐次线性方程不是恰当方程时,我们讨论了特殊情况下,如何求积分因子,进而把原来的方程变为恰当方程进行求解的方法.
关键词 变系数微分方程 恰当方程 积分因子
下载PDF
ITERATION OF POSITIVE SOLUTION FOR A SECOND-ORDER ORDINARY DIFFERENTIAL EQUATION WITH CHANGE OF SIGN 被引量:3
20
作者 姚庆六 《Annals of Differential Equations》 2002年第4期410-416,共7页
An iterative process of positive solution for BVP w'+h(t)f(w)=0, w(0)=w(1)= 0 is established, where h(t) is allowed to changes sign on [0,1]. The process starts from a simple function.
关键词 second-order ordinary differential equation two-point boundary value problem coefficient that changes sign monotone iterative technique
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部