Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe...Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
In this paper, a theorem of the local qualitative classification of equllibrium of a special type of higher order ordinary differential system is provided for establishing the theoretical bases to extend the planer. ...In this paper, a theorem of the local qualitative classification of equllibrium of a special type of higher order ordinary differential system is provided for establishing the theoretical bases to extend the planer. qualitative nomgraphy in [1] to the special geometricaljy qualitative method in 3-dimensions.展开更多
In this paper, we establish a result of Leray-Schauder degree on the order interval which is induced by a pair of strict lower and upper solutions for a system of second-order ordinary differential equations. As appli...In this paper, we establish a result of Leray-Schauder degree on the order interval which is induced by a pair of strict lower and upper solutions for a system of second-order ordinary differential equations. As applications, we prove the global existence of positive solutions for a multi-parameter system of second-order ordinary differential equations with respect to parameters. The discussion is based on the result of Leray- Schauder degree on the order interval and the fixed point index theory in cones.展开更多
In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Mo...In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Morse theory and an index theory.展开更多
This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix ...This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.展开更多
First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of ...First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.展开更多
This article considers the Dirichlet problem of homogeneous and inhomogeneous second-order ordinary differential systems. A nondegeneracy result is proven for positive solutions of homogeneous systems. Sufficient and ...This article considers the Dirichlet problem of homogeneous and inhomogeneous second-order ordinary differential systems. A nondegeneracy result is proven for positive solutions of homogeneous systems. Sufficient and necessary conditions for the existence of multiple positive solutions for inhomogeneous systems are obtained by making use of the nondegeneracy and uniqueness results of homogeneous systems.展开更多
Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D G...Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.展开更多
In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and t...In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.展开更多
It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of ...It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.展开更多
This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In par...This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.展开更多
The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value...The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.展开更多
A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in th...A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.展开更多
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ...A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int...The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization r...Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization results.展开更多
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFB1805005)in part by the National Natural Science Foundation of China(Grant No.62031019)in part by the European Commission through the H2020-MSCA-ITN META WIRELESS Research Project under Grant 956256。
文摘Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
文摘In this paper, a theorem of the local qualitative classification of equllibrium of a special type of higher order ordinary differential system is provided for establishing the theoretical bases to extend the planer. qualitative nomgraphy in [1] to the special geometricaljy qualitative method in 3-dimensions.
基金Supported in part by the National Natural Science Foundation (No.11101404) of Chinathe Fundamental Research Funds for the Central Universities (No.lzujbky-2012-11)
文摘In this paper, we establish a result of Leray-Schauder degree on the order interval which is induced by a pair of strict lower and upper solutions for a system of second-order ordinary differential equations. As applications, we prove the global existence of positive solutions for a multi-parameter system of second-order ordinary differential equations with respect to parameters. The discussion is based on the result of Leray- Schauder degree on the order interval and the fixed point index theory in cones.
文摘In this paper,we consider an asymptotically linear second-order ordinary differential system with Dirchlet boundary value conditions. Under some conditions,we show the multiplicity of solutions to the system by the Morse theory and an index theory.
文摘This paper deals with the singular perturbation of the boundary value problem of the systems for quasi-linear ordinary differential equationswhere x,f, y , h, A, B and C all belong to Rn , and g is an n×n matrix function. Under suitable conditions we prove the existence of the solutions by diagonalization and the fixed point theorem and also estimate the remainder.
基金Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
文摘First, an asynchronous distributed parallel evolutionary modeling algorithm (PEMA) for building the model of system of ordinary differential equations for dynamical systems is proposed in this paper. Then a series of parallel experiments have been conducted to systematically test the influence of some important parallel control parameters on the performance of the algorithm. A lot of experimental results are obtained and we make some analysis and explanations to them.
基金supported by the NNSF of China(10671064)the second author was supported by the Australian Research Council's Discovery Projects(DP0450752)
文摘This article considers the Dirichlet problem of homogeneous and inhomogeneous second-order ordinary differential systems. A nondegeneracy result is proven for positive solutions of homogeneous systems. Sufficient and necessary conditions for the existence of multiple positive solutions for inhomogeneous systems are obtained by making use of the nondegeneracy and uniqueness results of homogeneous systems.
基金The paper was financially supported by the National Natural Science Foundation of China (No. 19802008)Excellent Doctoral Dissertation Grant of the Ministry of Education of China (No. 199927)
文摘Based on the Laplace transform, a direct derivation of the ordinary differential equations for the three-dimensional transient free-surface Green function in marine hydrodynamics is presented. The results for the 3D Green function and all its spatial derivatives are a set of fourth-order ordinary differential equations, which are identical with that of Clement (1998). All of these results may be used to accelerate numerical computation for the time-domain boundary element method in marine hydrodynamics.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.
基金supported by National Key Research and Development Program of China(2019YFC0605300)the National Natural Science Foundation of China(61873299,61902022,61972028)+2 种基金Scientific and Technological Innovation Foundation of Shunde Graduate School,University of Science and Technology Beijing(BK21BF002)Macao Science and Technology Development Fund under Macao Funding Scheme for Key R&D Projects(0025/2019/AKP)Macao Science and Technology Development Fund(0015/2020/AMJ)。
文摘It is crucial to predict the outputs of a thickening system,including the underflow concentration(UC)and mud pressure,for optimal control of the process.The proliferation of industrial sensors and the availability of thickening-system data make this possible.However,the unique properties of thickening systems,such as the non-linearities,long-time delays,partially observed data,and continuous time evolution pose challenges on building data-driven predictive models.To address the above challenges,we establish an integrated,deep-learning,continuous time network structure that consists of a sequential encoder,a state decoder,and a derivative module to learn the deterministic state space model from thickening systems.Using a case study,we examine our methods with a tailing thickener manufactured by the FLSmidth installed with massive sensors and obtain extensive experimental results.The results demonstrate that the proposed continuous-time model with the sequential encoder achieves better prediction performances than the existing discrete-time models and reduces the negative effects from long time delays by extracting features from historical system trajectories.The proposed method also demonstrates outstanding performances for both short and long term prediction tasks with the two proposed derivative types.
文摘This research work investigates the use of Artificial Neural Network (ANN) based on models for solving first and second order linear constant coefficient ordinary differential equations with initial conditions. In particular, we employ a feed-forward Multilayer Perceptron Neural Network (MLPNN), but bypass the standard back-propagation algorithm for updating the intrinsic weights. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial or boundary conditions and contains no adjustable parameters. The second part involves a feed-forward neural network to be trained to satisfy the differential equation. Numerous works have appeared in recent times regarding the solution of differential equations using ANN, however majority of these employed a single hidden layer perceptron model, incorporating a back-propagation algorithm for weight updation. For the homogeneous case, we assume a solution in exponential form and compute a polynomial approximation using statistical regression. From here we pick the unknown coefficients as the weights from input layer to hidden layer of the associated neural network trial solution. To get the weights from hidden layer to the output layer, we form algebraic equations incorporating the default sign of the differential equations. We then apply the Gaussian Radial Basis function (GRBF) approximation model to achieve our objective. The weights obtained in this manner need not be adjusted. We proceed to develop a Neural Network algorithm using MathCAD software, which enables us to slightly adjust the intrinsic biases. We compare the convergence and the accuracy of our results with analytic solutions, as well as well-known numerical methods and obtain satisfactory results for our example ODE problems.
基金Supported by the Scientific Research Foundation for Advisor Program of Higher Education of Gansu Province(1009-6)Supported by the Scientific Research Foundation for Youth Scholars of Hexi University(qn201015)
文摘The preconditioned generalized minimal residual(GMRES) method is a common method for solving non-symmetric,large and sparse linear systems which originated in discrete ordinary differential equations by Boundary value methods.In this paper,we propose a new circulant preconditioner to speed up the convergence rate of the GMRES method, which is a convex linear combination of P-circulant and Strang-type circulant preconditioners. Theoretical and practical arguments are given to show that this preconditioner is feasible and effective in some cases.
基金This research has been supported in part by the Natural Sciences and Engineering Research Council of Canada(Grant OGPIN-336)and by the"Ministere de l'Education du Quebec"(FCAR Grant-ER-0725)
文摘A formulation of a differential equation as projection and fixed point pi-Mem alloivs approximations using general piecnvise functions. We prone existence and uniqueness of the up proximate solution* convergence in the L2 norm and nodal supercnnvergence. These results generalize those obtained earlier by Hulme for continuous piecevjise polynomials and by Delfour-Dubeau for discontinuous pieceuiise polynomials. A duality relationship for the two types of approximations is also given.
文摘A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
基金supported by the National Natural Science Foundation of China[grant numbers 41375110,11471244]
文摘The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
基金the National Natural Science Foundation of China(19971057) and the Youth Science Foundation of ShanghaiMunicipal Commission
文摘Biforations of an ordinary differential equation with two-point boundary value condition are investigated. Using the singularity theory based on the Liapunov-Schmidt reduction, we have obtained some characterization results.