This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence ...This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence of Adomian's Method to derive the solutions of high order linear fractional equations, and then the numerical solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations.We can see the advantage of this method to deal with fractional differential equations.展开更多
In this paper,we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations(MTFNODEs).First,the presented problem is equivalently transformed into its integral form with...In this paper,we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations(MTFNODEs).First,the presented problem is equivalently transformed into its integral form with multi-term Riemann-Liouville integrals.Second,the compound product trapezoidal rule is used to approximate the fractional integrals.Then,the unconditional stability and convergence with the order 1+αN−1−αN−2 of the proposed scheme are strictly established,whereαN−1 andαN−2 are the maximum and the second maximum fractional indexes in the considered MTFNODEs,respectively.Finally,two numerical examples are provided to support the theoretical results.展开更多
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadra...We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.展开更多
This paper presents a simple and rigorous solution procedure of residue harmonic balance for predicting the accurate approximation of certain autonomous ordinary differential systems.In this solution procedure,no smal...This paper presents a simple and rigorous solution procedure of residue harmonic balance for predicting the accurate approximation of certain autonomous ordinary differential systems.In this solution procedure,no small parameter is assumed.The harmonic residue of balance equation is separated in two parts at each step.The first part has the same number of Fourier terms as the present order of approximation and the remaining part is used in the subsequent improvement.The corrections are governed by linear ordinary differential equation so that they can be solved easily by means of harmonic balance method again.Three kinds of different differential equations involving general,fractional and delay ordinary differential systems are given as numerical examples respectively.Highly accurate limited cycle frequency and amplitude are captured.The results match well with the exact solutions or numerical solutions for a wide range of control parameters.Comparison with those available shows that the residue harmonic balance solution procedure is very effective for these autonomous differential systems.Moreover,the present method works not only in predicting the amplitude but also the frequency of bifurcated period solution for delay ordinary differential equation.展开更多
基金the National Natural Science Foundation of China(Nos.11601003,11371027)Natural Science Research Project of Colleges of Anhui Province(No.KJ2016A023)+1 种基金Natural Science Foundation of Anhui Province(No.1508085MA01)College Students’Scientific Research Training Plan of Anhui University(No.KYXL2014006)
文摘This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian's Method. In this paper, we firstly use the convergence of Adomian's Method to derive the solutions of high order linear fractional equations, and then the numerical solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations.We can see the advantage of this method to deal with fractional differential equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11701502 and 11871065).
文摘In this paper,we present a superlinear numerical method for multi-term fractional nonlinear ordinary differential equations(MTFNODEs).First,the presented problem is equivalently transformed into its integral form with multi-term Riemann-Liouville integrals.Second,the compound product trapezoidal rule is used to approximate the fractional integrals.Then,the unconditional stability and convergence with the order 1+αN−1−αN−2 of the proposed scheme are strictly established,whereαN−1 andαN−2 are the maximum and the second maximum fractional indexes in the considered MTFNODEs,respectively.Finally,two numerical examples are provided to support the theoretical results.
基金This research was supported by National Natural Science Foundation of China(Nos.11901135,11961009)Foundation of Guizhou Science and Technology Department(Nos.[2020]1Y015,[2017]1086)+1 种基金The first author would like to acknowledge the financial support by the China Scholarship Council(201708525037)The second author was supported by the Academic Research Fund of the Ministry of Education of Singapore under grant No.R-146-000-305-114.
文摘We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative.The method is developed by dividing the domain into a number of subintervals,and applying the quadratic interpolation on each subinterval.The method is shown to be unconditionally stable,and for general nonlinear equations,the uniform sharp numerical order 3−νcan be rigorously proven for sufficiently smooth solutions at all time steps.The proof provides a gen-eral guide for proving the sharp order for higher-order schemes in the nonlinear case.Some numerical examples are given to validate our theoretical results.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2011AQ022 and ZR2012AL03)
文摘This paper presents a simple and rigorous solution procedure of residue harmonic balance for predicting the accurate approximation of certain autonomous ordinary differential systems.In this solution procedure,no small parameter is assumed.The harmonic residue of balance equation is separated in two parts at each step.The first part has the same number of Fourier terms as the present order of approximation and the remaining part is used in the subsequent improvement.The corrections are governed by linear ordinary differential equation so that they can be solved easily by means of harmonic balance method again.Three kinds of different differential equations involving general,fractional and delay ordinary differential systems are given as numerical examples respectively.Highly accurate limited cycle frequency and amplitude are captured.The results match well with the exact solutions or numerical solutions for a wide range of control parameters.Comparison with those available shows that the residue harmonic balance solution procedure is very effective for these autonomous differential systems.Moreover,the present method works not only in predicting the amplitude but also the frequency of bifurcated period solution for delay ordinary differential equation.