In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an alg...In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 .展开更多
In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of ne...In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.展开更多
In this paper, the topological of integral surfaces near certain of Lyapunov type singularpoints and certain type of nodes of ordinary differential equations in complex domain are studied.We introduce Briot-Bouquet tr...In this paper, the topological of integral surfaces near certain of Lyapunov type singularpoints and certain type of nodes of ordinary differential equations in complex domain are studied.We introduce Briot-Bouquet transformation, in order to study the topological structure of integralsurfaces near higher order singular points. At last we give an estimate of the makimum numberof isolated limit integral surfaces passing through certain type of higher order singular points.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
文摘In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 .
基金Projects Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper, some misunderstam igs concerning the necessary conditions for resonance for ordinary differential equations with turning point have been corrected, and a recursive process for finding the sequence of necessary conditions for resonance has beenoffered.
基金This project is supported by the National Natural Science Foundation of China
文摘In this paper, the topological of integral surfaces near certain of Lyapunov type singularpoints and certain type of nodes of ordinary differential equations in complex domain are studied.We introduce Briot-Bouquet transformation, in order to study the topological structure of integralsurfaces near higher order singular points. At last we give an estimate of the makimum numberof isolated limit integral surfaces passing through certain type of higher order singular points.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.