Using GIS, GPS and GPRS, a dynamic management system of ore blending in an open pit mine has been designed and developed. A linear program was established in a practical application. The system is very good at automat...Using GIS, GPS and GPRS, a dynamic management system of ore blending in an open pit mine has been designed and developed. A linear program was established in a practical application. The system is very good at automatically drawing up a daily production plan of ore blending and monitors and controls the process of mining production in real time. Experiments under real conditions show that the performance of this system is stable and can satisfy production standards of ore blending in open pit mines.展开更多
In order to obtain good sintering performance, it is important to understand sintering properties of iron ores. Sintering properties including chemical composition, granulation and high-temperature behaviors of ores f...In order to obtain good sintering performance, it is important to understand sintering properties of iron ores. Sintering properties including chemical composition, granulation and high-temperature behaviors of ores from China, Brazil and Australia. Furthermore, several indices were defined to evaluate sintering properties of iron ores. The results show that: for chemical composition, Brazilian ores present high TFe, low SiOz, and low Alz03 con- tent. For granulation, particle diameter ratio of Brazilian ores are high; particle intermediate fraction of Chinese con- centrates are low; and average particle size and clay type index of Australian ores are high. For high-temperature properties, ores from China, Brazil and Australia present different characteristics. Ores from different origins should be mixed together to obtain good high-temperature properties. According to the analysis of each ore's sintering prop- erties, an ore blending scheme (Chinese concentrates 20 ^-1- Brazilian ores 400//oo -k Australian ores 40 ~) was sugges- ted. Moreover, sinter pot test using blending mix was performed, and the results indicated that the ore blending scheme led to good sintering performance and sinter quality.展开更多
Mauritanian iron ore powder(OM)has advantages of high iron grade,low aluminum content,and low loss on ignition,which can be used as a new mineral to replace low alumina limonite that has been exhausted in Australia.Ho...Mauritanian iron ore powder(OM)has advantages of high iron grade,low aluminum content,and low loss on ignition,which can be used as a new mineral to replace low alumina limonite that has been exhausted in Australia.However,it will have a certain negative impact on sintering because of its high SiO_(2) content.The mechanism of SiO_(2) content affecting the sintering behavior was first studied through FactSage 7.2.Then,the liquid fluidity,penetration,and high-temperature performance of different iron ore powders were compared.Finally,the optimization of ore blending structure was studied by the micro-sintering method and the sinter pot test.The results show that the increase in SiO_(2) content can reduce the assimilation temperature.The low penetration of OM can lead to an increase in the amount of liquid,and the high SiO_(2) content of OM increases the viscosity of the liquid phase.What is more,the increase in SiO_(2) also increases the formation of silicate and fayalite phase and inhibits the formation of silico-ferrite of calcium and aluminum(SFCA).To optimize ore blending structure,OM and the low SiO_(2) powder OD from Australia were used together,which improves the content of SFCA by 2.04%and decreases the contents of calcium silicate and fayalite by 0.63%and 4.99%,respectively.The results of the sinter pot test indicated that the properties of sinter have been improved.展开更多
Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components we...Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.展开更多
A new scheduling model for the bulk ore blending process in iron-making industry is presented , by converting the process into an assembly flow shop scheduling problem with sequence-depended setup time and limited int...A new scheduling model for the bulk ore blending process in iron-making industry is presented , by converting the process into an assembly flow shop scheduling problem with sequence-depended setup time and limited intermediate buffer , and it facilitates the scheduling optimization for this process.To find out the optimal solution of the scheduling problem , an improved genetic algorithm hybridized with problem knowledge-based heuristics is also proposed , which provides high-quality initial solutions and fast searching speed.The efficiency of the algorithm is verified by the computational experiments.展开更多
文摘Using GIS, GPS and GPRS, a dynamic management system of ore blending in an open pit mine has been designed and developed. A linear program was established in a practical application. The system is very good at automatically drawing up a daily production plan of ore blending and monitors and controls the process of mining production in real time. Experiments under real conditions show that the performance of this system is stable and can satisfy production standards of ore blending in open pit mines.
文摘In order to obtain good sintering performance, it is important to understand sintering properties of iron ores. Sintering properties including chemical composition, granulation and high-temperature behaviors of ores from China, Brazil and Australia. Furthermore, several indices were defined to evaluate sintering properties of iron ores. The results show that: for chemical composition, Brazilian ores present high TFe, low SiOz, and low Alz03 con- tent. For granulation, particle diameter ratio of Brazilian ores are high; particle intermediate fraction of Chinese con- centrates are low; and average particle size and clay type index of Australian ores are high. For high-temperature properties, ores from China, Brazil and Australia present different characteristics. Ores from different origins should be mixed together to obtain good high-temperature properties. According to the analysis of each ore's sintering prop- erties, an ore blending scheme (Chinese concentrates 20 ^-1- Brazilian ores 400//oo -k Australian ores 40 ~) was sugges- ted. Moreover, sinter pot test using blending mix was performed, and the results indicated that the ore blending scheme led to good sintering performance and sinter quality.
基金The authors would like to thank the the National Key Research and Development Program of China(Grant Nos.2021YFC2902400 and 2021YFC2902404)the National Natural Science Foundation of China(Grant Nos.51904023 and 51804027).
文摘Mauritanian iron ore powder(OM)has advantages of high iron grade,low aluminum content,and low loss on ignition,which can be used as a new mineral to replace low alumina limonite that has been exhausted in Australia.However,it will have a certain negative impact on sintering because of its high SiO_(2) content.The mechanism of SiO_(2) content affecting the sintering behavior was first studied through FactSage 7.2.Then,the liquid fluidity,penetration,and high-temperature performance of different iron ore powders were compared.Finally,the optimization of ore blending structure was studied by the micro-sintering method and the sinter pot test.The results show that the increase in SiO_(2) content can reduce the assimilation temperature.The low penetration of OM can lead to an increase in the amount of liquid,and the high SiO_(2) content of OM increases the viscosity of the liquid phase.What is more,the increase in SiO_(2) also increases the formation of silicate and fayalite phase and inhibits the formation of silico-ferrite of calcium and aluminum(SFCA).To optimize ore blending structure,OM and the low SiO_(2) powder OD from Australia were used together,which improves the content of SFCA by 2.04%and decreases the contents of calcium silicate and fayalite by 0.63%and 4.99%,respectively.The results of the sinter pot test indicated that the properties of sinter have been improved.
文摘Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.
基金Item Sponsored by National Key Technology Research and Development Program in 11th Five-Year Plan of China ( 2006AA04Z184 )National Natural Science Foundation of China ( 60974023 )
文摘A new scheduling model for the bulk ore blending process in iron-making industry is presented , by converting the process into an assembly flow shop scheduling problem with sequence-depended setup time and limited intermediate buffer , and it facilitates the scheduling optimization for this process.To find out the optimal solution of the scheduling problem , an improved genetic algorithm hybridized with problem knowledge-based heuristics is also proposed , which provides high-quality initial solutions and fast searching speed.The efficiency of the algorithm is verified by the computational experiments.